Câu 2 trang 91 SGK Hình học 11 Nâng cao

Đề bài

Cho hình chóp S.ABCD.

a. Chứng minh rằng nếu ABCD là hình bình hành thì \(\overrightarrow {SB}  + \overrightarrow {SD}  = \overrightarrow {SA}  + \overrightarrow {SC} \). Điều ngược lại có đúng không ?

b. Gọi O là giao điểm của AC và BD. Chứng tỏ rằng ABCD là hình bình hành khi và chỉ khi \(\overrightarrow {SA}  + \overrightarrow {SB}  + \overrightarrow {SC}  + \overrightarrow {SD}  = 4\overrightarrow {SO} \)

Lời giải chi tiết

 

a. Ta có:

\(\eqalign{  & \overrightarrow {SB}  + \overrightarrow {SD}  = \overrightarrow {SA}  + \overrightarrow {SC}   \cr  &  \Leftrightarrow \overrightarrow {SB}  - \overrightarrow {SC}  = \overrightarrow {SA}  - \overrightarrow {SD}  \cr&\Leftrightarrow \overrightarrow {CB}  = \overrightarrow {DA}  \cr} \)

⇔ ABCD là hình bình hành.

b. Ta có:

\(\eqalign{  & \overrightarrow {SA}  + \overrightarrow {SB}  + \overrightarrow {SC}  + \overrightarrow {SD}  = 4\overrightarrow {SO}   \cr  &  \Leftrightarrow \overrightarrow {SO}  + \overrightarrow {OA}  + \overrightarrow {SO}  + \overrightarrow {OB} \cr& + \overrightarrow {SO}  + \overrightarrow {OC}  + \overrightarrow {SO}  + \overrightarrow {OD}  = 4\overrightarrow {SO}   \cr  &  \Leftrightarrow \overrightarrow {OA}  + \overrightarrow {OB}  + \overrightarrow {OC}  + \overrightarrow {OD}  = \overrightarrow 0 \,\,\left( * \right) \cr} \)

Nếu ABCD là hình bình hành thì \(\overrightarrow {OA}  + \overrightarrow {OB}  + \overrightarrow {OC}  + \overrightarrow {OD}  = \overrightarrow 0 \) suy ra

 \(\overrightarrow {SA}  + \overrightarrow {SB}  + \overrightarrow {SC}  + \overrightarrow {SD}  = 4\overrightarrow {SO} \) (do (*))

Ngược lại, giả sử \(\overrightarrow {SA}  + \overrightarrow {SB}  + \overrightarrow {SC}  + \overrightarrow {SD}  = 4\overrightarrow {SO} ,\) ta có (*).

Gọi M, N lần lượt là trung điểm của AC, BD thì :

\(\overrightarrow {OA}  + \overrightarrow {OC}  = 2\overrightarrow {OM} ,\overrightarrow {OB}  + \overrightarrow {OD}  = 2\overrightarrow {ON} \)

Từ (*) suy ra \(2\left( {\overrightarrow {OM}  + \overrightarrow {ON} } \right) = \overrightarrow 0 ,\) điều này chứng tỏ O, M, N thẳng hàng

Mặt khác, M thuộc AC, N thuộc BD và O là giao điểm của AC và BD nên O, M, N thẳng hàng chỉ xảy ra khi O ≡ M ≡ N, tức O là trung điểm AC và BD, hay ABCD là hình bình hành.

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved