Câu 2 trang 34 SGK Hình học 11 Nâng cao

Đề bài

Chứng minh rằng nếu một hình nào đó có hai trục đối xứng vuông góc với nhau thì hình đó có tâm đối xứng

Lời giải chi tiết

Giả sử hình H có hai trục đối xứng d và d’ vuông góc với nhau

Gọi O là giao điểm của hai trục đối xứng đó

Lấy M là điểm bất kì thuộc hình H, M1 là điểm đối xứng với M qua d, M’ là điểm đối xứng với M1 qua d’

Vì d và d’ đều là trục đối xứng của hình H nên M1 và M’ đều thuộc H

Gọi I là trung điểm của MM1, J là trung điểm của M1M’ thì ta có:

\(\overrightarrow {OM} = \overrightarrow {OI} + \overrightarrow {IM} = \overrightarrow {M'J} + \overrightarrow {JO} = \overrightarrow {M'O} \)  hay \(\overrightarrow {OM} + \overrightarrow {OM'} = \overrightarrow 0 \)

Vậy phép đối xứng tâm O biến điểm M thuộc hình H thành điểm M’ thuộc H, suy ra H có tâm đối xứng là O

 

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved