Bài 1. Tính đơn điệu của hàm số
Bài 2. Cực trị của hàm số
Bài 3. Giá trị lớn nhất và nhỏ nhất của hàm số
Bài 4. Đồ thị của hàm số và phép tịnh tiến hệ tọa độ
Bài 5. Đường tiệm cận của đồ thị hàm số
Bài 6. Khảo sát sự biến thiên và vẽ đồ thị của một số hàm đa thức
Bài 7. Khảo sát sự biến thiên và vẽ đồ thị của một số hàm phân thức hữu tỉ
Bài 8. Một số bài toán thường gặp về đồ thị
Ôn tập chương I. Ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số
Bài 1. Lũy thừa với số mũ hữu tỉ
Bài 2. Lũy thừa với số mũ thực
Bài 3, 4. Lôgarit, lôgarit thập phân và lôgarit tự nhiên
Bài 5, 6. Hàm số mũ , hàm số lôgarit và hàm số lũy thừa
Bài 7. Phương trình mũ và lôgarit
Bài 8. Phương trình mũ và lôgarit
Bài 9. Bất phương trình mũ và lôgarit
Ôn tập chương II - Hàm số lũy thừa, hàm số mũ và hàm số lôgarit
Cho hàm số
\(y = {{x - 2} \over {x - 1}}\)
LG a
Khảo sát sự biến thiên và vẽ đồ thị (H) của hàm số đã cho.
Lời giải chi tiết:
+) TXĐ: \(D = \mathbb{R}\backslash \left\{ 1 \right\}\)
+) Chiều biến thiên:
\(\mathop {\lim }\limits_{x \to \pm \infty } y = 1\) nên TCN \(y = 1\)
\(\mathop {\lim }\limits_{x \to {1^ + }} y = - \infty ,\mathop {\lim }\limits_{x \to {1^ - }} y = + \infty \) nên TCĐ \(x = 1\)
Ta có:
\(y' = \frac{1}{{{{\left( {x - 1} \right)}^2}}} > 0,\forall x \in D\)
Hàm số đồng biến trên các khoảng \(\left( { - \infty ;1} \right)\) và \(\left( {1; + \infty } \right)\) nên không có cực trị.
BBT:
+) Đồ thị:
LG b
Chứng minh rằng với mọi \(m \ne 0\), đường thẳng \(y = mx - 3m\) cắt đường cong (H) tại hai điểm phân biệt, trong đó ít nhất một giao điểm có hoành độ lớn hơn 2.
Lời giải chi tiết:
Hoành độ giao điểm của đường thẳng và đường cong (H) là nghiệm của phương trình.
\(mx - 3m = {{x - 2} \over {x - 1}}\)
\( \Leftrightarrow (mx - 3m)(x - 1) = x - 2\)
\( \Leftrightarrow f(x) = m{x^2} - (4m + 1)x + 3m + 2 = 0\) (1)
Vì với mọi \(m \ne 0\)
\(\Delta = {(4m + 1)^2} - 4m(3m + 2) = 4{m^2} + 1 > 0\)
Nên phương trình trên có hai nghiệm phân biệt: \({x_1} = 2 + {{1 - \sqrt {4{m^2} + 1} } \over {2m}}\) và \({x_2} = 2 + {{1 + \sqrt {4{m^2} + 1} } \over {2m}}\).
Do đó, với mọi \(m \ne 0\), đường thẳng cắt đường cong (H) tại hai điểm phân biệt.
- Nếu m < 0 thì \({x_1} > 2\) vì \({{1 - \sqrt {4{m^2} + 1} } \over {2m}} > 0\)
- Nếu m > 0 thì \({x_2} > 2\) vì \({{1 + \sqrt {4{m^2} + 1} } \over {2m}} > 0\)
Bài 29. Thực hành: Vẽ biểu đồ, nhận xét và giải thích sự chuyển dịch cơ cấu công nghiệp
Đề ôn tập học kì 2 – Có đáp án và lời giải
Bài 22. Vấn đề phát triển nông nghiệp
Bài 9. Pháp luật với sự phát triển bền vững của đất nước
Đề kiểm tra 15 phút - Chương 2 - Hoá học 12