Câu 16 trang 223 Sách bài tập Hình học 11 Nâng cao

Đề bài

Cho hai đường thẳng ∆ và ∆’ chéo nhau và vuông góc với nhau. (P) là mặt phẳng chứa đường thẳng ∆’ và vuông góc với ∆ (A ≠ I). Hai điểm B, C thay đổi trên ∆’ sao cho mp(B, ∆) vuông góc với mp(C, ∆). Gọi AA’, BB’, CC’ là các đường cao của tam giác ABC. Chứng minh rằng:

a) \(A{B^2} + A{C^2} - B{C^2}\) không đổi.

b) A’B.A’C không đổi và trực tâm của tam giác ABC là điểm cố định.

c) Các điểm B’, C’ thuộc một đường tròn cố định.

Lời giải chi tiết

 

Ta có \(AI \bot \left( {IBC} \right)\) nên \(\widehat {BIC}\) hoặc \({180^0} - \widehat {BIC}\) là góc giữa mp(B, ∆) và mp(C, ∆).

Theo giả thiết \(mp\left( {B,\Delta } \right) \bot mp\left( {C,\Delta } \right)\) nên \(\widehat {BIC} = {90^0}\). Như vậy tứ diện IABC có IA, IB, IC đôi một vuông góc.

a) Ta có

\(\eqalign{  & A{B^2} + A{C^2} - B{C^2}  \cr  &  = A{I^2} + I{B^2} + A{I^2} + I{C^2} - B{C^2}  \cr  &  = 2{\rm{A}}{I^2} \cr} \)

Điều này khẳng định \(A{B^2} + A{C^2} - B{C^2}\) không đổi.

b) Dễ thấy IA’ là đường cao của tam giác vuông IBC. Vậy \(A'B.A'C = IA{'^2}\).

Vì \(IA' \bot \Delta '\) nên IA’ là cố định, do đó A’B.A’C không đổi.

Vì IABC là tứ diện có các cạnh IA, IB, IC đôi một vuông góc nên trực tâm của tam giác ABC là hình chiếu H của điểm I trên mặt phẳng (ABC) (trùng với mặt phẳng (A, ∆’)). Vậy trực tâm H của tam giác ABC là điểm cố định.

c) Ta có B’, C’ thuộc mp(A, ∆).

\(\widehat {AB'H} = \widehat {AC'H} = {90^0}\).

Vậy B’, C’ thuộc đường tròn đường kính AH trong mp(A, ∆’). Đường tròn này cố định.

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved