GIẢI TÍCH SBT - TOÁN 12 NÂNG CAO
GIẢI TÍCH SBT - TOÁN 12 NÂNG CAO

Bài 1.59 trang 22 SBT Giải tích 12 Nâng cao

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b

Cho hàm số

\(y = {x^3} - 2m(x + 1) + 1\)

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b

LG a

Với các giá trị nào của m, đồ thị hàm số đã cho cắt trục hoành tại ba điểm phân biệt

Lời giải chi tiết:

Hoành độ giao điểm của đồ thị hàm số đã cho và trục hoành là nghiệm của phương trình

\(\eqalign{& {x^3} + 1 - 2m(x + 1) = 0  \cr& \Leftrightarrow \left( {x + 1} \right)\left( {{x^2} - x + 1} \right) - 2m\left( {x + 1} \right) = 0\cr&  \Leftrightarrow (x + 1)({x^2} - x + 1 - 2m) = 0 \cr} \)

\( \Leftrightarrow \left[ \matrix{x =  - 1 \hfill \cr f(x) = {x^2} - x + 1 - 2m = 0(1) \hfill \cr}  \right.\)

Đồ thị của hàm số đã cho cắt trục hoành tại ba điểm phân biệt khi và chỉ khi khi phương trình (1) có hai nghiệm phân biệt khác -1, tức là

\(\left\{ \matrix{\Delta  > 0 \hfill \cr f( - 1) \ne 0 \hfill \cr}  \right. \)

\(\Leftrightarrow \left\{ \matrix{8m - 3 > 0 \hfill \cr3 - 2m \ne 0 \hfill \cr}  \right. \)

\(\Leftrightarrow m > {3 \over 8}\) và \(m \ne {3 \over 2}\).

LG b

Khảo sát sự biến thiên và vẽ đồ thị của hàm số với m = 2.

Lời giải chi tiết:

Với \(m = 2\) ta có:

\(y = {x^3} - 4\left( {x + 1} \right) + 1\) \( = {x^3} - 4x - 3\)

+) TXĐ: \(D = \mathbb{R}\)

+) Chiều biến thiên:

\(\mathop {\lim }\limits_{x \to  + \infty } y =  + \infty ,\mathop {\lim }\limits_{x \to  - \infty } y =  - \infty \)

\(\begin{array}{l}y' = 3{x^2} - 4\\y' = 0 \Leftrightarrow 3{x^2} - 4 = 0\\ \Leftrightarrow {x^2} = \frac{4}{3} \Leftrightarrow x =  \pm \frac{2}{{\sqrt 3 }}\\y\left( {\frac{2}{{\sqrt 3 }}} \right) = \frac{{ - 27 - 16\sqrt 3 }}{9}\\y\left( { - \frac{2}{{\sqrt 3 }}} \right) = \frac{{ - 27 + 16\sqrt 3 }}{9}\end{array}\)

BBT:

+) Đồ thị:

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved