GIẢI TÍCH SBT - TOÁN 12 NÂNG CAO
GIẢI TÍCH SBT - TOÁN 12 NÂNG CAO

Bài 1.46 trang 19 SBT Giải tích 12 Nâng cao

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b

LG a

Tìm các hệ số a, b, c sao cho đồ thị hàm số

\(f(x) = {x^3} + a{x^2} + bx + c\)

Cắt trục tung tại điểm có tung độ là 2 và tiếp xúc với đường thẳng y = 1 tại điểm có hoành độ là –1

Lời giải chi tiết:

(C) cắt trục tung tại \(\left( {0;2} \right)\) nên \(2 = f\left( 0 \right)\)

\( \Leftrightarrow 2 = {0^3} + a{.0^2} + b.0 + c\)

\( \Leftrightarrow c = 2\)

Vì đồ thị của hàm số cần tìm đi qua điểm (-1;1) nên \(f\left( { - 1} \right) =  - 1 + 1-b + 2 = 1\).

Do đó \(a = b\).

Ta có: \(f'\left( x \right) = 3{x^2} + 2ax + b\)

Vì đồ thị tiếp xúc với đường thẳng \(y = 1\) tại điểm có hoành độ là -1 nên \(f'( - 1) = 3 - 2a + b = 0\)

Hay \(-2a+b=-3\).

Ta có hệ:

\(\left\{ \begin{array}{l}a = b\\ - 2a + b =  - 3\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}a = b\\ - 2a + a =  - 3\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}a = 3\\b = 3\end{array} \right.\)

Vậy \(a = 3,b = 3,c = 2\).

LG b

Khảo sát sự biến thiên và vẽ đồ thị của hàm số với các giá trị vừa tìm được của a, b, c.

Lời giải chi tiết:

Với \(a = 3,b = 3,c = 2\) ta có \(y = {x^3} + 3{x^2} + 3x + 2\)

+) TXĐ: \(D = \mathbb{R}\).

+) Chiều biến thiên:

\(\mathop {\lim }\limits_{x \to  + \infty } y =  + \infty ,\mathop {\lim }\limits_{x \to  - \infty } y =  - \infty \)

\(\begin{array}{l}y' = 3{x^2} + 6x + 3\\y' = 0 \Leftrightarrow 3{x^2} + 6x + 3 = 0\\ \Leftrightarrow 3{\left( {x + 1} \right)^2} = 0 \Leftrightarrow x =  - 1\end{array}\)

\(y' \ge 0,\forall x \in \mathbb{R}\) nên hàm số đồng biến trên \(\mathbb{R}\).

Hàm số không có cực trị.

BBT:

+) Đồ thị:

\(\begin{array}{l}y'' = 6x + 6\\y'' = 0 \Leftrightarrow 6x + 6 = 0\\ \Leftrightarrow x =  - 1 \Rightarrow y\left( { - 1} \right) = 1\end{array}\)

Điểm uốn \(I\left( { - 1;1} \right)\).

Đồ thị hàm số cắt trục tung tại điểm \(\left( {0;2} \right)\).

Phương trình hoành độ giao điểm:

\(\begin{array}{l}{x^3} + 3{x^2} + 3x + 2 = 0\\ \Leftrightarrow \left( {x + 2} \right)\left( {{x^2} + x + 1} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x + 2 = 0\\{x^2} + x + 1 = 0\left( {VN} \right)\end{array} \right.\\ \Leftrightarrow x =  - 2\end{array}\)

Đồ thị cắt trục hoành tại điểm \(\left( { - 2;0} \right)\).

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved