Cho hàm số \(y = \left| x \right|\)
LG a
Chứng minh rằng hàm số đã cho liên tục tại điểm x = 0
Giải chi tiết:
Ta có: \(\mathop {\lim }\limits_{x \to 0} f\left( x \right) = \mathop {\lim }\limits_{x \to 0} \left| x \right| = 0 = f\left( 0 \right)\)
Vậy f liên tục tại x = 0
LG b
Tính đạo hàm của hàm số tại x = 0, nếu có.
Giải chi tiết:
Ta có:
\(\eqalign{ & \mathop {\lim }\limits_{x \to {0^ + }} {{f\left( x \right) - f\left( 0 \right)} \over x} = \mathop {\lim }\limits_{x \to {0^ + }} {{\left| x \right|} \over x} = \mathop {\lim }\limits_{x \to 0} {x \over x} = 1 \cr & \mathop {\lim }\limits_{x \to {0^ - }} {{f\left( x \right) - f\left( 0 \right)} \over x} = \mathop {\lim }\limits_{x \to {0^ - }} {{\left| x \right|} \over x} = \mathop {\lim }\limits_{x \to 0} {{ - x} \over x} = - 1 \cr} \)
Do đó không tồn tại \(\mathop {\lim }\limits_{x \to 0} {{f\left( x \right) - f\left( 0 \right)} \over x}\) nên hàm số f không có đạo hàm tại x = 0
LG c
Mệnh đề “Hàm số liên tục tại điểm x0 thì có đạo hàm tại x0 ” đúng hay sai ?
Giải chi tiết:
Mệnh đề sai. Thật vậy, hàm số \(f\left( x \right) = \left| x \right|\) liên tục tại điểm 0 (theo câu a) nhưng không có đạo hàm tại điểm đó (theo câu b).
Chủ đề 1. Giới thiệu chung về cơ khí chế tạo
Chủ đề 3. Quá trình giành độc lập dân tộc của các quốc Đông Nam Á
Chương 8. Dẫn xuất halogen - ancol - phenol
Giáo dục kinh tế
Bài 7. Pháp luật về quản lí vũ khí, vật liệu nổ, công cụ hỗ trợ
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Lớp 11