Bài 1. Tính đơn điệu của hàm số
Bài 2. Cực trị của hàm số
Bài 3. Giá trị lớn nhất và nhỏ nhất của hàm số
Bài 4. Đồ thị của hàm số và phép tịnh tiến hệ tọa độ
Bài 5. Đường tiệm cận của đồ thị hàm số
Bài 6. Khảo sát sự biến thiên và vẽ đồ thị của một số hàm đa thức
Bài 7. Khảo sát sự biến thiên và vẽ đồ thị của một số hàm phân thức hữu tỉ
Bài 8. Một số bài toán thường gặp về đồ thị
Ôn tập chương I. Ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số
Bài 1. Lũy thừa với số mũ hữu tỉ
Bài 2. Lũy thừa với số mũ thực
Bài 3, 4. Lôgarit, lôgarit thập phân và lôgarit tự nhiên
Bài 5, 6. Hàm số mũ , hàm số lôgarit và hàm số lũy thừa
Bài 7. Phương trình mũ và lôgarit
Bài 8. Phương trình mũ và lôgarit
Bài 9. Bất phương trình mũ và lôgarit
Ôn tập chương II - Hàm số lũy thừa, hàm số mũ và hàm số lôgarit
Cho hình vuông ABCD với cạnh có độ dài bằng 1 và cung BD là một phần tư đường tròn tâm A, bán kính AB chứa trong hình vuông (h.1.4). Tiếp tuyến tại M của cung BD cắt đoạn thẳng CD tại điểm P và cắt đoạn thẳng BC tại điểm Q. Đặt x = DP và y = BQ
LG a
Chứng minh rằng
\(P{Q^2} = {x^2} + {y^2} - 2x - 2y + 2\) và \(PQ = x + y\)
Từ đó tính y theo x
Lời giải chi tiết:
Tam giác PCQ vuông tại C có \(PC = 1 - x,QC = 1 - y\) và vuông tại C nên theo Pitago ta có:
\(\begin{array}{l}P{Q^2} = P{C^2} + C{Q^2}\\ = {\left( {1 - x} \right)^2} + {\left( {1 - y} \right)^2}\\ = 1 - 2x + {x^2} + 1 - 2y + {y^2}\\ = {x^2} + {y^2} - 2x - 2y + 2\end{array}\)
Lại có,
BC, QP là tiếp tuyến với đường tròn \(\left( {A;AB} \right)\) cắt nhau tại Q nên \(QM = QB = y\)
DC, QP là tiếp tuyến với đường tròn \(\left( {A;AB} \right)\) cắt nhau tại P nên \(PM = PD = y\)
Vậy \(PQ = PM + MQ = x + y\).
\(\begin{array}{l}
\Rightarrow P{Q^2} = {\left( {x + y} \right)^2} = {x^2} + 2xy + {y^2}\\
\Rightarrow {x^2} + {y^2} - 2x - 2y + 2 = {x^2} + 2xy + {y^2}\\
\Leftrightarrow 2xy + 2x + 2y - 2 = 0\\
\Leftrightarrow xy + x + y - 1 = 0\\
\Leftrightarrow y\left( {x + 1} \right) = 1 - x\\
\Leftrightarrow y = \frac{{1 - x}}{{x + 1}}
\end{array}\)
Vậy \(y = {{1 - x} \over {x + 1}},0 < x < 1\)
LG b
Tính PQ theo x và tìm x để PQ có độ dài nhỏ nhất.
Lời giải chi tiết:
\(\begin{array}{l}
PQ = x + y = x + \frac{{1 - x}}{{x + 1}}\\
= \frac{{{x^2} + x + 1 - x}}{{x + 1}} = \frac{{{x^2} + 1}}{{x + 1}}
\end{array}\)
Do đó, \(PQ = {{{x^2} + 1} \over {x + 1}},0 < x < 1\).
Xét hàm
\(\begin{array}{l}
f\left( x \right) = \frac{{{x^2} + 1}}{{x + 1}}\\
f'\left( x \right) = \frac{{2x\left( {x + 1} \right) - \left( {{x^2} + 1} \right)}}{{{{\left( {x + 1} \right)}^2}}}\\
= \frac{{{x^2} + 2x - 1}}{{{{\left( {x + 1} \right)}^2}}}\\
f'\left( x \right) = 0 \Leftrightarrow {x^2} + 2x - 1 = 0\\
\Leftrightarrow \left[ \begin{array}{l}
x = \sqrt 2 + 1 \notin \left( {0;1} \right)\\
x = \sqrt 2 - 1 \in \left( {0;1} \right)
\end{array} \right.
\end{array}\)
Do đó, đoạn thẳng PQ có độ dài nhỏ nhất khi \(x = \sqrt 2 - 1\)
Chương 5. Di truyền học người
Đề kiểm tra 15 phút học kì 2
CHƯƠNG 7. SẮT VÀ MỘT SỐ KIM LOẠI QUAN TRỌNG
PHẦN 6: TIẾN HÓA
Tải 10 đề kiểm tra 15 phút - Chương 5 – Hóa học 12