Bài 1. Tính đơn điệu của hàm số
Bài 2. Cực trị của hàm số
Bài 3. Giá trị lớn nhất và nhỏ nhất của hàm số
Bài 4. Đồ thị của hàm số và phép tịnh tiến hệ tọa độ
Bài 5. Đường tiệm cận của đồ thị hàm số
Bài 6. Khảo sát sự biến thiên và vẽ đồ thị của một số hàm đa thức
Bài 7. Khảo sát sự biến thiên và vẽ đồ thị của một số hàm phân thức hữu tỉ
Bài 8. Một số bài toán thường gặp về đồ thị
Ôn tập chương I. Ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số
Bài 1. Lũy thừa với số mũ hữu tỉ
Bài 2. Lũy thừa với số mũ thực
Bài 3, 4. Lôgarit, lôgarit thập phân và lôgarit tự nhiên
Bài 5, 6. Hàm số mũ , hàm số lôgarit và hàm số lũy thừa
Bài 7. Phương trình mũ và lôgarit
Bài 8. Phương trình mũ và lôgarit
Bài 9. Bất phương trình mũ và lôgarit
Ôn tập chương II - Hàm số lũy thừa, hàm số mũ và hàm số lôgarit
Đề bài
Trong các tam giác vuông mà cạnh huyền có độ dài bằng 10cm, hãy xác định tam giác có diện tích lớn nhất.
Lời giải chi tiết
Gọi x, y là độ dài hai cạnh góc vuông của tam giác vuông có cạnh huyền là 10 cm, 0 < x < 10 và 0 < y < 10.
Diện tích tam giác là \(S = {1 \over 2}xy(c{m^2})\)
Ta có \({x^2} + {y^2} = 100\)
S đạt giá trị lớn nhất khi và chỉ khi \({x^2}{y^2} = {x^2}(100 - {x^2})\) đạt giá trị lớn nhất.
Bài toán quy về: Tìm \(x \in \left( {0;10} \right)\) sao cho tại đó hàm số \(z = {x^2}(100 - {x^2}),x \in \left( {0;10} \right)\) đạt giá trị lớn nhất.
\(\begin{array}{l}
z' = 2x\left( {100 - {x^2}} \right) + {x^2}\left( { - 2x} \right)\\
= - 4{x^3} + 200x\\
z' = 0 \Leftrightarrow - 4{x^3} + 200x = 0\\
\Leftrightarrow - 4x\left( {{x^2} - 50} \right) = 0\\
\Leftrightarrow \left[ \begin{array}{l}
x = 0 \notin \left( {0;10} \right)\\
x = 5\sqrt 2 \in \left( {0;10} \right)\\
x = - 5\sqrt 2 \notin \left( {0;10} \right)
\end{array} \right.
\end{array}\)
Do đó hàm số đạt GTLN tại \(x = 5\sqrt 2\). Khi đó \( y = 5\sqrt 2 \).
Trong các tam giác vuông đó, tam giác vuông cân có diện tích lớn nhất.
Độ dài hai cạnh góc vuông của tam giác đó là \(x = y = 5\sqrt 2 \) (cm).
Bài giảng ôn luyện kiến thức cuối học kì 1 môn Lịch sử lớp 12
Bài 14. Sử dụng và bảo vệ tài nguyên thiên nhiên
Bài 6. Công dân với các quyền tự do cơ bản
Review 2
Các dạng bài nghị luận văn học liên hệ, so sánh