GIẢI TÍCH SBT - TOÁN 12 NÂNG CAO
GIẢI TÍCH SBT - TOÁN 12 NÂNG CAO

Bài 1.23 trang 14 SBT Giải tích 12 Nâng cao

Đề bài

Hình thang cân ABCD có đáy nhỏ AB và hai cạnh bên đều dài 1m. Tính góc \(\alpha  = \widehat {DAB} = \widehat {CBA}\) sao cho hình thang có diện tích lớn nhất và diện tích lớn nhất đó (h.1.1)

Lời giải chi tiết

Dựng \(AH \bot CD\).

Đặt \(x = \widehat {ADC,}0 < x < {\pi  \over 2}\) , ta được AH = sinx; DH = cosx; DC = 1+ 2cosx.

Diện tích hình thang là

\(S = {{AB + CD} \over 2}AH \)

\(= (1 + \cos x)\sin x\)

với \(0 < x < {\pi  \over 2}\)

Bài toán quy về: Tìm \(x \in \left( {0;{\pi  \over 2}} \right)\) sao cho tại điểm đó S đạt giá trị lớn nhất trên khoảng \(\left( {0;{\pi  \over 2}} \right)\)

\(\begin{array}{l}S'\left( x \right) =  - {\sin ^2}x + \left( {1 + \cos x} \right)\cos x\\ = {\cos ^2}x - 1 + \cos x + {\cos ^2}x\\ = 2{\cos ^2}x + \cos x - 1\\ = \left( {\cos x + 1} \right)\left( {2\cos x - 1} \right)\\S'\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}\cos x =  - 1\\\cos x = \frac{1}{2}\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x = \pi  + k2\pi \\x =  \pm \frac{\pi }{3} + k2\pi \end{array} \right.\end{array}\)

Mà \(x \in \left( {0;\frac{\pi }{2}} \right)\) nên \(x = \frac{\pi }{3}\).

BBT:

Hình thang có diện tích lớn nhất khi \(\alpha  = {{2\pi } \over 3}\) .

Khi đó diện tích hình thang là \(S = {{3\sqrt 3 } \over 4}({m^2})\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved