GIẢI TÍCH - TOÁN 12 NÂNG CAO

Câu 10 trang 212 SGK Giải tích 12 Nâng cao

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c
LG d

Giải các phương trình sau:

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c
LG d

LG a

\({81^{{{\sin }^2}x}} + {81^{{{\cos }^2}x}} = 30\)

Phương pháp giải:

Giải phương trình bằng cách đặt ẩn phụ \(t = {81^{{{\cos }^2}x}}(1 \le t \le 81)\).

Lời giải chi tiết:

Đặt \(t = {81^{{{\cos }^2}x}}(1 \le t \le 81)\)

Khi đó: \({81^{{{\sin }^2}x}} = {81^{1- {{\cos }^2}x}} = {{81} \over t}\)

Phương trình trở thành:

\(\eqalign{
& {{81} \over t} + t = 30 \Leftrightarrow {t^2} - 30t + 81 = 0 \cr 
& \Leftrightarrow \left[ \matrix{
t = 27 \hfill \cr 
t = 3 \hfill \cr} \right. \Leftrightarrow \left[ \begin{array}{l}{81^{{{\cos }^2}x}} = 27\\{81^{{{\cos }^2}x}} = 3\end{array} \right.\cr &\Leftrightarrow \left[ \matrix{{3^{4{{\cos }^2}x}} = {3^3} \hfill \cr {3^{4{{\cos }^2}x}} = 3 \hfill \cr} \right. \Leftrightarrow \left[ \matrix{4{\cos ^2}x = 3 \hfill \cr 4{\cos ^2}x = 1 \hfill \cr} \right. \cr & \Leftrightarrow \left[ \matrix{2(1 + \cos 2x) = 3 \hfill \cr 2(1 + \cos 2x) = 1 \hfill \cr} \right. \cr &\Leftrightarrow \left[ \matrix{\cos 2x = {1 \over 2} \hfill \cr \cos 2x = - {1 \over 2} \hfill \cr} \right. \cr & \Leftrightarrow \left[ \matrix{x = \pm {\pi \over 6} + k\pi \hfill \cr x = \pm {\pi \over 3} + k\pi \hfill \cr} \right. \cr} \) 

LG b

\({\log _3}(\log _{{1 \over 2}}^2x - 3{\log _{{1 \over 2}}}x + 5) = 2\)

Phương pháp giải:

Biến đổi phương trình về phương trình bậc hai ẩn \({\log _{\frac{1}{2}}}x\)

Lời giải chi tiết:

Ta có:

\(\eqalign{
& {\log _3}(\log _{{1 \over 2}}^2x - 3{\log _{{1 \over 2}}}x + 5) = 2 \cr&\Leftrightarrow \log _{{1 \over 2}}^2x - 3{\log _{{1 \over 2}}}x + 5 = 9 \cr 
& \Leftrightarrow \log _{{1 \over 2}}^2x - 3{\log _{{1 \over 2}}} - 4 = 0 \cr 
& \Leftrightarrow \left[ \matrix{
{\log _{{1 \over 2}}}x = - 1 \hfill \cr 
{\log _{{1 \over 2}}}x = 4 \hfill \cr} \right. \Leftrightarrow \left[ \matrix{
x = 2 \hfill \cr 
x = {1 \over {16}} \hfill \cr} \right. \cr} \) 

Vậy \(S = {\rm{\{ }}{1 \over {16}};\,2\} \)

LG c

\({4^{{{\log }x} + 1}} - {6^{{{\log }x}}} - {2.3^{\log {x^2} + 2}} = 0\)

Lời giải chi tiết:

Điều kiện: x > 0

\(\eqalign{
& {4^{{{\log }x} + 1}} - {6^{{{\log }x}}} - {2.3^{\log {x^2} + 2}} = 0 \cr 
&  \Leftrightarrow {4.4^{\log x}} - {6^{\log x}} - {2.3^{\log {x^2}}}{.3^2} = 0\cr & \Leftrightarrow {4.4^{\log x}} - {6^{\log x}} - {18.3^{2\log x}} = 0\cr &\Leftrightarrow {4.4^{\log x}} - {6^{\log x}} - {18.9^{\log x}} = 0 \cr} \) 

Chia hai vế phương trình 4logx ta được:

\(4 - {({3 \over 2})^{\log x}} - 18.{({9 \over 4})^{\log x}} = 0\)

Đặt \(t = {({3 \over 2})^{\log x}}\,\,(t > 0)\) ta có phương trình:

\(18{t^2} + t - 4 = 0 \Leftrightarrow \left[ \matrix{
t = {4 \over 9} \hfill \cr 
t = - {1 \over 2}\,\,(loai) \hfill \cr} \right.\)

\(\eqalign{
& t = {4 \over 9} \Leftrightarrow {({3 \over 2})^{\log x}} = {({3 \over 2})^{-2}} \cr &\Leftrightarrow \log x = - 2 \cr 
& \Leftrightarrow x = {10^{ - 2}} = {1 \over {100}} \cr} \)

LG d

\(\left\{ \matrix{
{2^x}{8^{ - y}} = 2\sqrt 2 \hfill \cr 
{\log _9}{1 \over x} + {1 \over 2} = {1 \over 2}{\log _3}(9y) \hfill \cr} \right.\)

Lời giải chi tiết:

Điều kiện: x > 0; y > 0

\(\eqalign{
& {2^x}{8^{ - y}} = 2\sqrt 2 \Leftrightarrow {2^{x - 3y}} = {2^{{3 \over 2}}} \cr &\Leftrightarrow x - 3y = {3 \over 2}\,\,\,\,\,(1) \cr 
& {\log _9}{1 \over x} + {1 \over 2} = {1 \over 2}{\log _3}(9y) \cr&\Leftrightarrow {1 \over 2}{\log _3}{1 \over x} + {1 \over 2} = {1 \over 2}{\log _3}(9y) \cr 
& \Leftrightarrow {\log _3}\frac{1}{x} + 1 = {\log _3}9y\cr &\Leftrightarrow {\log _3}{3 \over x} = {\log _3}(9y) \Leftrightarrow {3 \over x} = 9y \cr &\Leftrightarrow xy = {1 \over 3}\,\,\,\,\,\,\,\,\,\,\,\,(2) \cr} \)

Từ (1) và (2) ta có hệ phương trình

\(\left\{ \matrix{
x - 3y = {3 \over 2} \hfill \cr 
xy = {1 \over 3} \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x = {3 \over 2} + 3y \hfill \cr 
({3 \over 2} + 3y)y = {1 \over 3} \hfill \cr} \right. \)

\(\Leftrightarrow \left\{ \matrix{
x = {3 \over 2} + 3y \hfill \cr 
3{y^2} + {3 \over 2}y - {1 \over 3} = 0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x = 2 \hfill \cr 
y = {1 \over 6},y=-{2 \over 3}(loai) \hfill \cr} \right.\) 

Vậy \(S = {\rm{\{ }}(2,\,{1 \over 6}){\rm{\} }}\)

 

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved