Đề bài
Cho hai đường thẳng: \(d\): \(\left\{\begin{matrix} x=1-t \\ y=2+2t \\ z=3t \end{matrix}\right.\) và \(d'\): \(\left\{\begin{matrix} x=1+t' \\ y=3-2t' \\ z=1 \end{matrix}\right.\).
Chứng minh \(d\) và \(d'\) chéo nhau.
Phương pháp giải - Xem chi tiết
Xác định các VTCP của \(d\) và \(d'\),chứng minh 2 vector đó không cùng phương.
Sử dụng điều kiện để hai đường thẳng chéo nhau: \(\left[ {\overrightarrow u ;\overrightarrow {u'} } \right].\overrightarrow {{M_1}{M_2}} \ne 0\) với \({\overrightarrow u ;\overrightarrow {u'} }\) lần lượt là VTCP của \(d, d'\) và \({M_1} \in d;\,\,{M_2} \in d'\).
Lời giải chi tiết
Đường thẳng \(d\) qua điểm \(M(1 ; 2 ; 0)\) và có vec tơ chỉ phương \(\overrightarrow{u}(-1 ; 2 ; 3)\).
Đường thẳng \(d'\) qua điểm \(M'(1 ; 3 ;1)\) và có vectơ chỉ phương \(\overrightarrow{u'}(1 ; -2 ; 0)\).
Dễ thấy \({\overrightarrow u ;\overrightarrow {u'} }\) không cùng phương, do đó d và d' hoặc cắt nhau, hoặc chéo nhau.
Xét \(\left [\overrightarrow{u},\overrightarrow{u'} \right ]\) \(=\left (\begin{vmatrix} 2 & 3\\ -2&0 \end{vmatrix};\begin{vmatrix} 3 &-1 \\ 0&1 \end{vmatrix};\begin{vmatrix} -1 & 2\\ 1& -2 \end{vmatrix} \right ) \) \(= (6 ; 3 ;0)\)
\(\overrightarrow{MM'} = (0 ; 1 ; 1)\).
Ta có : \(\left [\overrightarrow{u},\overrightarrow{u'} \right ].\overrightarrow{MM'}\) \(= 6.0 + 3.1 + 0.1 = 3≠ 0\)
Vậy \(d\) và \(d'\) chéo nhau.
Cách khác:
Có hai VTCP của hai đường thẳng không cùng phương (cmt)
Xét hệ:
\(\left\{ \begin{array}{l}1 - t = 1 + t'\\2 + 2t = 3 - 2t'\\3t = 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}t + t' = 0\\2t + 2t' = 1\\t = \dfrac{1}{3}\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}t + t' = 0\\t + t' = \dfrac{1}{2}\\t = \dfrac{1}{3}\end{array} \right.\left( {VN} \right)\)
Vậy hai đường thẳng chéo nhau.
Bài 1. Pháp luật và đời sống
Bài 11. Thiên nhiên phân hóa đa dạng
CHƯƠNG III. HỆ CƠ SỞ DỮ LIỆU QUAN HỆ
Chương 1. Cơ chế di truyền và biến dị
Đề kiểm tra giữa học kì II - Lớp 12