Bài 9 trang 91 SGK Hình học 12

Đề bài

Cho hai đường thẳng: \(d\): \(\left\{\begin{matrix} x=1-t  \\ y=2+2t  \\ z=3t \end{matrix}\right.\) và \(d'\): \(\left\{\begin{matrix} x=1+t'  \\ y=3-2t'  \\ z=1 \end{matrix}\right.\).

Chứng minh \(d\) và \(d'\) chéo nhau.

Phương pháp giải - Xem chi tiết

Xác định các VTCP của \(d\) và \(d'\),chứng minh 2 vector đó không cùng phương.

Sử dụng điều kiện để hai đường thẳng chéo nhau: \(\left[ {\overrightarrow u ;\overrightarrow {u'} } \right].\overrightarrow {{M_1}{M_2}}  \ne 0\) với \({\overrightarrow u ;\overrightarrow {u'} }\) lần lượt là VTCP của \(d, d'\) và \({M_1} \in d;\,\,{M_2} \in d'\).

Lời giải chi tiết

Đường thẳng \(d\) qua điểm \(M(1 ; 2 ; 0)\) và có vec tơ chỉ phương \(\overrightarrow{u}(-1 ; 2 ; 3)\).

Đường thẳng \(d'\) qua điểm \(M'(1 ; 3 ;1)\) và có vectơ chỉ phương \(\overrightarrow{u'}(1 ; -2 ; 0)\).

Dễ thấy \({\overrightarrow u ;\overrightarrow {u'} }\) không cùng phương, do đó d và d' hoặc cắt nhau, hoặc chéo nhau.

Xét \(\left [\overrightarrow{u},\overrightarrow{u'} \right ]\) \(=\left (\begin{vmatrix} 2 & 3\\ -2&0 \end{vmatrix};\begin{vmatrix} 3 &-1 \\ 0&1 \end{vmatrix};\begin{vmatrix} -1 & 2\\ 1& -2 \end{vmatrix} \right ) \) \(= (6 ; 3 ;0)\)

\(\overrightarrow{MM'} = (0 ; 1 ; 1)\).

Ta có : \(\left [\overrightarrow{u},\overrightarrow{u'} \right ].\overrightarrow{MM'}\) \(= 6.0 + 3.1 + 0.1 = 3≠ 0\)

Vậy \(d\) và \(d'\) chéo nhau.

Cách khác:

Có hai VTCP của hai đường thẳng không cùng phương (cmt)

Xét hệ:

\(\left\{ \begin{array}{l}1 - t = 1 + t'\\2 + 2t = 3 - 2t'\\3t = 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}t + t' = 0\\2t + 2t' = 1\\t = \dfrac{1}{3}\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}t + t' = 0\\t + t' = \dfrac{1}{2}\\t = \dfrac{1}{3}\end{array} \right.\left( {VN} \right)\)

Vậy hai đường thẳng chéo nhau.

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved