Bài tập 9 trang 157 Tài liệu dạy – học Toán 7 tập 1

Đề bài

Cho tam giác ABC có AB = AC, phân giác của góc A cắt BC tại H.

a) Chứng minh rằng \(\Delta AHB = \Delta AHC\)

b) Chứng minh rằng AH vuông góc với BC.

c) Kẻ \(HE \bot AB(E \in AB),HF \bot AC(F \in AC).\)  Chứng minh rằng \(\Delta HEB = \Delta HFC\)

d) Trên tia đối của tia HA ta lấy điểm D sao cho H là trung điểm của AD. Chứng minh rằng \(FH \bot BD\)

Lời giải chi tiết

 

a)Xét tam giác AHB và AHC có:

AB = AC (giả thiết)

\(\widehat {BAH} = \widehat {CAH}\)  (AH là tia phân giác của góc BAC)

AH là cạnh chung.

Do đó: \(\Delta AHB = \Delta AHC(c.g.c)\)

b) Ta có: \(\Delta AHB = \Delta AHC\)  (chứng minh câu a)

Suy ra: \(\widehat {AHB} = \widehat {AHC};\widehat {ABH} = \widehat {ACH}\)

Mà \(\widehat {AHB} + \widehat {AHC} = {180^0}\)   (kề bù)

Nên  \(\eqalign{  & \widehat {AHC} + \widehat {AHC} = {180^0} \Rightarrow 2\widehat {AHC} = {180^0}.  \cr  & \widehat {AHC} = {90^0} \Rightarrow AH \bot BC \cr} \)

c) Tam giác EBH vuông tại E có: \(\widehat {EBH} + \widehat {EHB} = {90^0}\)

Tam giác FHC vuông tại F có: \(\widehat {FHC} + \widehat {FCH} = {90^0}\)

Mà  \(\widehat {EBH} = \widehat {FCH}\)  (chứng minh câu b) nên  \(\widehat {EHB} = \widehat {FHC.}\)

Xét tam giác HEB và HFC có:

\(\eqalign{  & \widehat {EBH} = \widehat {FCH}  \cr  & \widehat {EHB} = \widehat {FHC}(cmt)  \cr  & HB = HC(\Delta AHB = \Delta AHC) \cr} \)

Do đó: \(\Delta HEB = \Delta HFC(g.c.g)\)

d) Xét tam giác AHC và DHB có:

AH = DH (giả thiết)

\(\eqalign{  & HC = HB(\Delta AHB = \Delta AHC)  \cr  & \widehat {AHC} = \widehat {BHD}( = {90^0}) \cr} \)

Do đó: \(\Delta AHC = \Delta DHB(c.g.c) \Rightarrow \widehat {HAC} = \widehat {HDB}\)

Mà hai góc này ở vị trí so le trong do đó AC // BD.

Mặt khác \(HF \bot AC\)   (giả thiết) nên ta có: \(HF \bot BD\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved