CHƯƠNG III. QUAN HỆ GIỮA CÁC YẾU TỐ TRONG TAM GIÁC – CÁC ĐƯỜNG ĐỒNG QUY CỦA TAM GIÁC

Bài tập 7 trang 128 Tài liệu dạy – học Toán 7 tập 2

Đề bài

 Cho tam giác ABC vuông tại A. Tia phân giác của góc C cắt AB ở M. Từ B kẻ BH vuông góc với đường thẳng CM \(\left( {H \in CM} \right)\). Trên tia đối của tia HC lấy điểm E sao cho HE = HM.

a) Chứng minh rằng tam giác MBE cân.

b) Chứng minh rằng \(\widehat {EBH} = \widehat {ACM}\)

c) Chứng minh rằng \(EB \bot BC\)

d) Đường thẳng BE cắt đường thẳng AC tại N. Tia phân giác \(\widehat {NAB}\) cắt đường thẳng BH tại D, tia ND cắt CM tại F. Tính số đo \(\widehat {NFC}\)

Lời giải chi tiết

 

a) ∆MBE có: BH là đường cao (\(BH \bot EM\) tại H)

BH là đường trung tuyến (HE = HM, \(H \in EM\))

Nên ∆MBE cân tại B.

b) ∆MBE cân tại B có BH là đường cao

=> BH cũng là đường phân giác \( \Rightarrow \widehat {EBH} = \widehat {HBM}\)

Ta có: \(\widehat {HBM} + \widehat {BMH} = 90^\circ\) (∆HMB vuông tại H)

\(\widehat {ACM} + \widehat {AMC} = 90^\circ\) (∆AMC vuông tại A)

\(\widehat {BMH} = \widehat {AMC}\) (đối đỉnh)

Do đó \(\widehat {HBM} = \widehat {ACM}.\)

Mà \(\widehat {HBM} = \widehat {EBH}.\)

Nên \(\widehat {ACM} = \widehat {EBH}.\)

c) Ta có: \(\widehat {EBH} = {1 \over 2}\widehat {EBM}\) (BH là tia phân giác của \(\widehat {EBM}\))

\(\widehat {ACM} = {1 \over 2}\widehat {ACB}\) (CM là tia phân giác của \(\widehat {ACB}\))

\(\widehat {EBH} = \widehat {ACM}\) (câu b)

Do đó \(\widehat {EBM} = \widehat {ACB}.\)

Mà \(\widehat {ACB} + \widehat {MBC} = 90^\circ\) (∆ABC vuông tại A). Nên \(\widehat {EBM} + \widehat {MBC} = 90^\circ\).

\( \Rightarrow \widehat {EBC} = 90^\circ\). Vậy\(EB \bot BC.\)

d) ∆ABN có: AD là đường phân giác (gt)

BD là đường phân giác và AD cắt BD tại D (gt)

=> D là giao điểm ba đường phân giác của tam giác ABN

=> ND là đường phân giác của ∆ABN \( \Rightarrow \widehat {ANF} = {1 \over 2}\widehat {BNC}\)

Mà \(\widehat {NCF} = {1 \over 2}\widehat {NCB}\) (CF là tia phân giác của \(\widehat {NCB}\))

\(\widehat {BNC} + \widehat {NCB} = 90^\circ\) (∆NBC vuông tại B)

Nên \(\widehat {ANF} + \widehat {NCF} = {1 \over 2}\widehat {BNC} + {1 \over 2}\widehat {NCB} = {1 \over 2}(\widehat {BNC} + \widehat {NCB}) = {1 \over 2}.90^\circ  = 45^\circ .\)

Lại có \(\widehat {NFC} + \widehat {ANF} + \widehat {NCF} = 180^\circ\) (tổng ba góc trong tam giác)

\( \Rightarrow \widehat {NFC} + 45^\circ  = 180^\circ  \Rightarrow \widehat {NFC} = 135^\circ\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved