Bài tập 7 trang 104 Tài liệu dạy – học Toán 8 tập 1

Đề bài

Cho tam giác nhọn ABC có AH là đường cao. Tia phân giác của góc B cắt AC tại M. Từ M kẻ đường thẳng vuông góc với AH cắt AB tại N.

a) Chứng minh rằng tứ giác BCMN là hình thang.

b) Chứng mình rằng BN = MN.

Lời giải chi tiết

a) Ta có: \(MN \bot AH\,\,\left( {gt} \right)\)

Và \(BC \bot AH\) (AH là đường cao của tam giác ABC) \( \Rightarrow MN//BC \Rightarrow \widehat {BMN} = \widehat {CBM}\)( so le trong)

Và \(\widehat {NBM} = \widehat {MBC}\) (BM là tia phân giác góc B)

Suy ra \(\widehat {BMN} = \widehat {NBM} \Rightarrow \Delta BMN\) cân tại N.

Vậy \(BN = MN\)

 

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved