Bài 5 trang 90 SGK Hình học 12

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c

Tìm số giao điểm của đường thẳng \(d\) và mặt phẳng \((α)\) :

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c

LG a

a) d: \(\left\{\begin{matrix} x=12+4t & \\ y=9+3t & \\ z=1+t & \end{matrix}\right.\) và \((α) : 3x + 5y - z - 2 = 0\) ;

Phương pháp giải:

Phương pháp tìm giao điểm của đường thẳng \(d:\,\,\left\{ \begin{array}{l}x = {x_0} + at\\y = {y_0} + bt\\z = {z_0} + ct\end{array} \right.\,\,\left( {t \in R} \right)\) và mặt phẳng \(\left( P \right):\,\,Ax + By + Cz + D = 0\).

Gọi \(M = d \cap \left( P \right) \Rightarrow M \in d\) \(\Rightarrow M\left( {{x_0} + at;\,{y_0} + bt;{z_0} + ct} \right)\).

Thay tọa độ điểm M vào phương trình mặt phẳng (P), tìm ẩn t, sau đó suy ra tọa độ điểm \(M\).

Lời giải chi tiết:

Gọi \(MM \in d \) \(\Rightarrow M\left( {12 + 4t;9 + 3t;1 + t} \right)\).

Giả sử \(M \in \left( \alpha \right) \) thì ta có: 

\(3(12 + 4t) +5(9 + 3t) - (1 + t) -2 = 0\)

\( ⇔ 26t + 78 = 0 ⇔ t = -3\).

Vậy \(d  ∩ (α) = M(0 ; 0 ; -2)\).

LG b

b) d:  \(\left\{\begin{matrix} x=1+t & \\ y=2-t & \\ z=1+2t & \end{matrix}\right.\) và \((α) : x + 3y + z+1 = 0\) ;

Lời giải chi tiết:

Gọi \(M \in d\) \( \Rightarrow M\left( {1 + t;2 - t;1 + 2t} \right)\). 

Giả sử \(M \in \left( \alpha \right) \) thì ta có: 

\((1 + t) + 3.(2 - t) + (1 + 2t) + 1 = 0\)

\(⇔  0.t +9= 0\), phương trình vô nghiệm.

Chứng tỏ \(d\) và \((α)\) không cắt nhau hay \(d // (α)\).

LG c

c) d:  \(\left\{\begin{matrix} x=1+t & \\ y=1+2t & \\ z=2-3t & \end{matrix}\right.\) và \((α) : x + y + z - 4 = 0\).

Lời giải chi tiết:

Gọi \(M \in d \) \(\Rightarrow M\left( {1 + t;1 + 2t;2 - 3t} \right)\). 

Giả sử \(M \in \left( \alpha \right) \) thì ta có: 

\((1 + t) + (1+ 2t) + (2 - 3t) - 4 = 0\)

\(⇔  0t + 0 = 0\)

Phương trình này có vô số nghiệm, chứng tỏ \(d ⊂ (α)\) .

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved