Bài tập 3 trang 140 Tài liệu dạy – học Toán 8 tập 1

Đề bài

Cho tam giác ABC vuông tại A (AB < AC). Gọi M là trung điểm của BC. Vẽ \(MD \bot AB(D \in AB)\) và \(ME \bot AC(E \in AC)\) .

a) Chứng minh rằng tứ giác ADME là hình chữ nhật.

b) Trên tia đối của tia DM lấy điểm N sao cho D là trung điểm MN. Chứng minh rằng tứ giác AMBN là hình thoi.

c) AM cắt CD tại F. Chứng minh rằng \(MB = 3MF.\)

d) Gọi I là giao điểm hai đường chéo của hình chữ nhật ADME. Vẽ CK vuông góc với BN tại K. Chứng minh rằng tứ giác IKC cân.

Lời giải chi tiết

a) Xét tứ giác ADME có: \(\widehat {ADE} = {90^0}\) (\(\Delta ABC\) vuông tại A)

\(\widehat {ADM} = {90^0}\) (\(MD \bot AB\) tại D) và \(\widehat {AEM} = {90^0}\) (\(ME \bot AC\) tại E)

Do đó tứ giác ADME là hình chữ nhật.

b) \(\Delta ABC\) có M là trung điểm của BC.

Và MD // AC (MD // AE, \(E \in AC\))

\( \Rightarrow D\) là trung điểm của AB.

Và D là trung điểm của NM (gt)

Do đó tứ giac AMBN là hình bình hành

Mà \(AB \bot NM\,\,\left( {gt} \right)\) nên tứ giác AMBN là hình thoi.

c) \(\Delta ABC\) vuông tại A có AM là đường trung tuyến (M là trung điểm của BC)

\( \Rightarrow AM = {1 \over 2}BC\).

Mà \(BM = {1 \over 2}BC\) (M là trung điểm của BC) nên \(AM = BM\).

\(\Delta ABC\)  có AM cắt CD tại F (gt);

AM là đường trung tuyến (M là trung điểm của BC)

CD là đường trung tuyến (D là trung điểm của AB)

\( \Rightarrow F\) là trọng tâm của tam giác ABC \( \Rightarrow FM = {1 \over 3}AM \Rightarrow AM = 3FM\).

Mà \(AM = BM\,\,\left( {cmt} \right) \Rightarrow BM = 3MF\).

d) Hình chữ nhật ADME có AM và DE cắt nhau tại I (gt) \( \Rightarrow I\) là trung điểm của AM.

Tứ giác ANMC có \(AN = MC\,\,\left( { = BM} \right)\) và AN // MC (AN //BM, \(M \in BC\))

\( \Rightarrow ANMC\) là hình bình hành \( \Rightarrow \) AM và NC cắt nhau tại trung điểm của mỗi đường.

Mà I là trung điểm của AM (cmt) nên I là trung điểm của NC.

\( \Rightarrow KI = IC = {1 \over 2}NC \Rightarrow \Delta IKC\) cân tại I.

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved