CHƯƠNG I. ĐƯỜNG THẲNG VUÔNG GÓC – ĐƯỜNG THẲNG SONG SONG

Bài tập 17 trang 116 Tài liệu dạy – học Toán 7 tập 1

Đề bài

Cho góc tù xOy. Trong góc xOy vẽ tia Om vuông góc với Ox và tia On vuông góc với tia Oy.

a) Chứng tỏ rằng \(\widehat {xOn} = \widehat {mOy}\)

b) Tính số đo góc \(\widehat {xOy} + \widehat {mOn}\)

c) Gọi Ot là tia phân giác của góc xOy. Chứng minh rằng Ot là tia phân giác của góc mOn.

Lời giải chi tiết

 

a)Ta có: \(Om \bot 0x \Rightarrow \widehat {m0x} = {90^0}\)  và \(On \bot Oy \Rightarrow \widehat {nOy} = {90^0}\)

Do đó: \(\widehat {m0x} = \widehat {nOy}({90^0})(1)\)

Tia On nằm trong \(\widehat {xOy} \Rightarrow \widehat {xOn} + \widehat {nOy} = \widehat {xOy}\)

Và tia Om nằm trong \(\widehat {xOy} \Rightarrow \widehat {mOy} + \widehat {m0x} = \widehat {xOy}\)

Nên \(\widehat {xOn} + \widehat {nOy} = \widehat {mOy} + \widehat {m0x}(2)\)

Từ (1) và (2) ta có: \(\widehat {xOn} = \widehat {mOy}\)

b) Ta có: \(\eqalign{  & \widehat {xOy} + \widehat {mOn} = \widehat {nOy} + \widehat {xOn} + \widehat {mOn}  \cr  &  = {90^0} + \widehat {mOy} + \widehat {mOn} = {90^0} + \widehat {nOy} = {90^0} + {90^0} = {180^0} \cr} \)

c) Ta có: Ot là tia phân giác góc \(\widehat {xOy} \Rightarrow \widehat {xOt} = \widehat {yOt} \Rightarrow \widehat {xOn} + \widehat {nOt} = \widehat {yOm} + \widehat {mOt}\)

Mà \(\widehat {xOn} = \widehat {mOy}\)  (câu a) \( \Rightarrow \widehat {nOt} = \widehat {mOt}\)

Mà tia Ot nằm giữa hai tia Om và On => Ot là tia phân giác góc mOn.

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved