Bài tập 15 trang 104 Tài liệu dạy – học Toán 8 tập 1

Đề bài

Cho hình thang cân ABCD (CD là đáy bé) có \(\widehat C + \widehat D = 2(\widehat A + \widehat B)\) . Đường chéo AC vuông góc với cạnh bên BC.

a) Tính các góc của hình thang.

b) Chứng minh rằng AC là phân giác của góc \(\widehat {DAB}\).

Lời giải chi tiết

a) Tứ giác ABCD có: \(\widehat A + \widehat B + \widehat C + \widehat D = {360^0}\) mà \(\widehat C + \widehat D = 2\left( {\widehat A + \widehat B} \right)\)

Nên \(\widehat A + \widehat B + 2\left( {\widehat A + \widehat B} \right) = {360^0} \Rightarrow 3\left( {\widehat A + \widehat B} \right) = {360^0} \Rightarrow \widehat A + \widehat B = {120^0}\)

Mà \(\widehat A = \widehat B\) (ABCD là hình thang cân)

Nên \(\widehat B + \widehat B = {120^0} \Rightarrow 2\widehat B = {120^0} \Rightarrow \widehat B = {60^0}\).

Vậy \(\widehat A = \widehat B = {60^0}\).

Ta có \(\widehat A + \widehat D = {180^0}\) (hai góc trong cùng phía và AB // CD)

\( \Rightarrow {60^0} + \widehat D = {180^0} \Rightarrow \widehat D = {180^0} - {60^0} = {120^0}\)

Mà \(\widehat C = \widehat D\) (ABCD là hình thang cân). Nên \(\widehat C = \widehat D = {120^0}\)

b) Ta có \(\widehat {BAC} + \widehat B = {90^0}\)  (\(\Delta ACB\) vuông tại C)

\( \Rightarrow \widehat {BAC} + {60^0} = {90^0} \Rightarrow \widehat {BAC} = {30^0}\)

\(\widehat {DAC} = \widehat A - \widehat {BAC} = {60^0} - {30^0} = {30^0}\)

\( \Rightarrow \widehat {DAC} = \widehat {BAC} \Rightarrow AC\) là phân giác của góc DAB.

 

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved