Bài tập 13 trang 157 Tài liệu dạy – học Toán 7 tập 1

Đề bài

Cho tam giác ABC vuông tại A, kẻ \(AH \bot BC(H \in BC)\) . Trên tia đối của tia HA ta lấy điểm M sao cho HM = HA.

a) Chứng minh rằng \(\Delta ABH = \Delta MBH\)

b) Gọi I là trung điểm của BC. Qua C kẻ đường thẳng vuông góc với AC, đường kẻ này cắt tia AI tại D. Chứng minh rằng AB = DC.

c) Chứng minh rằng \(\widehat {ACB} = \widehat {AMB}\)

d) Chứng minh rằng BC // DM.

Lời giải chi tiết

 

a)Xét tam giác AHB và MHB có:

HA = HM (giả thiết)

\(\widehat {AHB} = \widehat {MHB}( = {90^0})\)

BH là cạnh chung.

Dó đó: \(\Delta AHB = \Delta MHB(c.g.c).\)

b) Ta có: \(BA \bot AC\)(tam giác ABC vuông tại A) và \(DC \bot AC(gt)\)

\( \Rightarrow AB//CD \Rightarrow \widehat {ABI} = \widehat {DCI}\)

Xét tam giác ABI và DCI có:

\(\widehat {ABI} = \widehat {DCI}(cmt)\)

BI = CI (I là trung điểm của BC)

Và \(\widehat {AIB} = \widehat {DIC}\)(hai góc đối đỉnh)

Do đó: \(\Delta ABI = \Delta DCI(g.c.g)\)

Suy ra : AB = CD.

c) Ta có: \(\widehat {ACB} + \widehat {HAC} = {90^0}(\Delta AHC\)vuông tại H)

\(\eqalign{  & \widehat {BAH} + \widehat {HAC} = {90^0}(\widehat {BAC} = {90^0})  \cr  & \Rightarrow \widehat {ACB} = \widehat {BAH} \cr} \)

Mà \(\widehat {BAH} = \widehat {BMH}(\Delta ABH = \Delta MBH)\)   nên \(\widehat {ACB} = \widehat {AMB}\)

d) Cách 1:

Gọi O là giao điểm của BD và CM.

Xét tam giác MBC và DCB có:

BM = CD (=AB)

\(\widehat {MBC} = \widehat {DCB}( = \widehat {ABH})\)

BC là cạnh chung.

Do đó: \(\Delta MBC = \Delta DCB(c.g.c) \)

\(\Rightarrow \widehat {BCM} = \widehat {CBD} \)

\(\Rightarrow \widehat {BCM} = ({180^0} - \widehat {BOC}):2(1)\)

Xét tam giác BDM và CMD có:

\(BD = CM(\Delta MBC = \Delta DCB)\)

BM = CD

MD là cạnh chung.

Do đó: \(\Delta BDM = \Delta CMD(c.c.c) \)

\(\Rightarrow \widehat {BDM} = \widehat {CMD} \)

\(\Rightarrow \widehat {CMD} = ({180^0} - \widehat {MOD}):2(2)\)

Mà \(\widehat {BOC} = \widehat {MOD}(3)\) (đối đỉnh)

Từ (1), (2), (3) ta có: \(\widehat {BCM} = \widehat {CMD}\)

Mà góc BCM và CMD co le trong do đó: BC // DM.

Cách 2:

Gọi N là trung điểm của MD

Xét hai tam giác HAI và HMI có:

HA = HM (gt)

\(\widehat {AHI} = \widehat {MHI}( = {90^0})\)

IH là cạnh chung.

Do đó: \(\Delta HAI = \Delta HMI(c.g.c) \Rightarrow IA = IM,\widehat {HAI} = \widehat {HMI}.\)

Mà IA = ID \((\Delta ABI = \Delta DCI) \Rightarrow IM = ID\)

Xét tam giác IMN và IDN có:

IM = ID

IN là cạnh chung

MN = DN (N là trung điểm của MD)

Do đó: \(\Delta IMN = \Delta IDN(c.c.c) \)

\(\Rightarrow \widehat {IMN} = \widehat {IDN}.\)

Ta có:

\(\widehat {HAI} + \widehat {IDN} = \widehat {HMI} + \widehat {IMN} \)

\(\Rightarrow \widehat {MAD} + \widehat {ADM} = \widehat {AMD}\)

Tam giác AMD có: \(\widehat {MAD} + \widehat {ADM} + \widehat {AMD} = {180^0}.\)

Do đó: \(\widehat {AMD} + \widehat {AMD} = {180^0} \)

\(\Rightarrow 2\widehat {AMD} = {180^0} \Rightarrow \widehat {AMD} = {90^0} \Rightarrow AM \bot DM\)

Ta có: \(AM \bot BC;AM \bot DM.\)   Vậy BC // DM.

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved