Đề bài
Vẽ hai đường thẳng cắt nhau só cho trong các góc tạo thành có một cặp góc đối đỉnh có tổng số đo bằng 130o. Tính số đo mỗi góc có trên hình.
Phương pháp giải - Xem chi tiết
2 góc kề bù có tổng số đo là \(180^0\)
Lời giải chi tiết
Theo đầu bài ta có: \(\widehat {aOd}\) và \(\widehat {bOc}\) đối đỉnh và \(\widehat {aOd} + \widehat {bOc} = {130^0}.\)
Ta có: \(\widehat {aOd} = \widehat {bOc}\) (hai góc đối đỉnh) nên \(2.\widehat {aOd} = {130^0} \Rightarrow \widehat {aOd} = {130^0}:2 = {65^0}\)
Do đó: \(\widehat {bOc} = \widehat {aOd} = {65^0}\)
Mà \(\widehat {aOd} + \widehat {aOc} = {180^0}\) (kề bù).
Nên \({65^0} + \widehat {aOc} = {180^0} \Rightarrow \widehat {aOc} = {180^0} - {65^0} = {115^0}.\)
\(\widehat {bOd} = \widehat {aOc}\) (hai góc đối đỉnh) nên \(\widehat {bOd} = {115^0}.\)
Ta còn có: \(\widehat {aOb} = {180^0},\widehat {cOd} = {180^0}.\)
Chương IV. Âm thanh
Bài 10: Giữ gìn và phát huy truyền thống tốt đẹp của gia đình, dòng họ
Bài 3
Chương VIII. Cảm ứng ở sinh vật
Review 4
Đề thi, đề kiểm tra Toán - Chân trời sáng tạo Lớp 7
Bài tập trắc nghiệm Toán - Kết nối tri thức
Đề thi, đề kiểm tra Toán - Cánh diều Lớp 7
Bài tập trắc nghiệm Toán - Cánh diều
Đề thi, đề kiểm tra Toán - Kết nối tri thức Lớp 7
Bài tập trắc nghiệm Toán - Chân trời sáng tạo
Bài giảng ôn luyện kiến thức môn Toán lớp 7
Lý thuyết Toán Lớp 7
SBT Toán - Cánh diều Lớp 7
SBT Toán - Chân trời sáng tạo Lớp 7
SBT Toán - Kết nối tri thức Lớp 7
SGK Toán - Cánh diều Lớp 7
SGK Toán - Chân trời sáng tạo Lớp 7
SGK Toán - Kết nối tri thức Lớp 7
Vở thực hành Toán Lớp 7