CHƯƠNG II. SÓNG CƠ VÀ SÓNG ÂM

Bài II.15 trang 32 SBT Vật Lí 12

Đề bài

Ở mặt chất lỏng có hai nguồn \(A,B\) cách nhau \(18cm\), dao động theo phương thẳng đứng với phương trình là \({u_A} = {u_B} = a{\rm{cos}}50\pi t.\) Tốc độ truyền sóng ở mặt chất lỏng là \(50cm/s.\) Gọi \(O\) là trung điểm của \(AB\), điểm \(M\) ở mặt chất lỏng nằm trên đường trung trực của \(AB\) và gần \(O\) nhất sao cho phần tử chất lỏng tại \(M\) dao động cùng pha với phần tử chất lỏng tại \(O\). Hỏi khoảng cách là bao nhiêu?

Phương pháp giải - Xem chi tiết

Sử dụng điều kiện cùng pha: \(d = k\lambda \)

Lời giải chi tiết

Tần số \(f = \dfrac{\omega }{{2\pi }} = \dfrac{{50\pi }}{{2\pi }} = 25Hz\)

Bước sóng: \(\lambda  = \dfrac{v}{f} = \dfrac{{50}}{{25}} = 2cm\)

Độ lệch pha giữa nguồn và điểm cách nguồn một đoạn \(d\) là \(\Delta \varphi  = \dfrac{{2\pi d}}{\lambda }\), vậy tất cả các điểm thuộc đường tròn tâm \(A\) bán kính \(AO\) đều cùng pha với \(O\) \( \Rightarrow M'\) cùng pha với \(O\)

Để \(M\) là điểm gần\({\rm{O}}\)nhất, cùng pha với \({\rm{O}}\)thì \(M\) cùng pha với \(M'\), gần \(M'\)nhất \( \Rightarrow MM' = \lambda \)

\( \Rightarrow \) \(AM = AO + \lambda \)

\(\begin{array}{l}OM = \sqrt {A{M^2} - A{O^2}} \\ = \sqrt {{{(AO + \lambda )}^2} - A{O^2}} \\ = \sqrt {{{(9 + 2)}^2} - {9^2}}  = 2\sqrt {10} cm\end{array}\)

 

 
Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved