Bài I.11 trang 17 SBTVật Lí 12

Đề bài

Hai con lắc đơn có chiều dài lần lượt là \({l_1},{l_2}\) và có chu kì lần lượt là \({T_1},{T_2}\) tại một nơi có gia tốc rơi tự do là \(9,8m/{s^2}\). Cho biết cũng tại nơi đó, con lắc đơn có chiều dài \({l_1} + {l_2}\) có chu kì dao động là \(2,4{\rm{s}}\) và con lắc đơn có chiều dài \({l_1} - {l_2}\) có chu kì dao động là \(0,8{\rm{s}}\). Hãy tính \({T_1},{T_2},{l_1}\)và \({l_2}\).

Phương pháp giải - Xem chi tiết

Sử dụng công thức tính chu kì dao động của con lắc đơn: \(T = 2\pi \sqrt {\dfrac{l}{g}} \)

Lời giải chi tiết

Ta có chu kì dao động của con lắc đơn: \(T = 2\pi \sqrt {\dfrac{l}{g}} \)

 \( \Rightarrow {T^2} \sim l\)

+ Con lắc đơn có chiều dài \(l = {l_1} + {l_2}\) sẽ dao động với chu kì \(T = \sqrt {T_1^2 + T_2^2} \)

+ Con lắc đơn có chiều dài \(l = {l_1} - {l_2}\) sẽ dao động với chu kì \(T = \sqrt {T_1^2 - T_2^2} \)

Ta có hệ:

\(\left\{ \begin{array}{l}T_1^2 + T_2^2 = 2,{4^2}\\T_1^2 - T_2^2 = 0,{8^2}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{T_1} = 1,8\\{T_2} = 1,6\end{array} \right.(s)\)

+ \({T_1} = 2\pi \sqrt {\dfrac{{{l_1}}}{g}}\)\(  \Leftrightarrow 1,8 = 2\pi \sqrt {\dfrac{{{l_1}}}{{9,8}}}  \Rightarrow {l_1} = 0,8m\)

+ \({T_2} = 2\pi \sqrt {\dfrac{{{l_2}}}{g}}\)\(\Leftrightarrow 1,6 = 2\pi \sqrt {\dfrac{{{l_2}}}{{9,8}}}  \Rightarrow {l_2} = 0,64m\)

 

 
Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved