Bài C7 trang 123 SGK Vật lí 9

Đề bài

Vận dụng kiến thức hình học, tính khoảng cách từ ảnh đến thấu kính và chiều cao của ảnh trong hai trường hợp ở C5 khi vật có chiều cao h = 6mm.

 

Phương pháp giải - Xem chi tiết

Dựa vào tỷ số đồng dạng của hai tam giác đồng dạng.

Lời giải chi tiết

 

Trường hợp 1- thấu kính hội tụ

+ Ta có: \(\Delta BB'I \sim \Delta OB'F'\)

Ta suy ra: \(\dfrac{{BI}}{{OF'}} = \dfrac{{BB'}}{{OB'}}\)  (1)

Theo đề bài, ta có: \(OA = BI = 8cm\), \(OF' = 12cm\)

Lại có: \(OB' = OB + BB'\)

Ta suy ra \(\left( 1 \right) \Leftrightarrow \dfrac{8}{{12}} = \dfrac{{BB'}}{{OB + BB'}}\)

\(\begin{array}{l} \Rightarrow \dfrac{{12}}{8} = \dfrac{{OB + BB'}}{{BB'}}\\ \Rightarrow 1,5 = \dfrac{{OB}}{{BB'}} + 1\end{array}\)

\( \Rightarrow \dfrac{{OB}}{{BB'}} = 0,5 \Rightarrow \dfrac{{BB'}}{{OB}} = 2\)  (2)

+ Ta có: \(\Delta OA'B' \sim \Delta OAB\)

Ta suy ra: \(\dfrac{{OA'}}{{OA}} = \dfrac{{A'B'}}{{AB}} = \dfrac{{OB'}}{{OB}}\)  (3)

Ta có \(OB' = OB + BB'\)

Ta suy ra \(\left( 3 \right) \Leftrightarrow \dfrac{{OA'}}{{OA}} = \dfrac{{A'B'}}{{AB}} = \dfrac{{OB + BB'}}{{OB}} = 1 + \dfrac{{BB'}}{{OB}}\)

Thế (2) vào (3) ta được: \(\dfrac{{OA'}}{{OA}} = \dfrac{{A'B'}}{{AB}} = 1 + 2 = 3\)

Từ đây ta suy ra:

- Khoảng cách từ ảnh đến thấu kính: \(OA' = 3.OA = 3.8 = 24cm\)

- Chiều cao của ảnh: \(A'B' = 3.AB = 3.6 = 18mm\)

Vậy ảnh có chiều cao \(18mm\) (cao gấp 3 lần vật) cách thấu kính một khoảng là \(24cm\)

+ Trường hợp 2: Thấu kính phân kì

+ Ta có: \(\Delta IB'B \sim \Delta FB'O\)

Ta suy ra: \(\dfrac{{IB}}{{FO}} = \dfrac{{B'B}}{{B'O}}\)

Theo đầu bài ta có: \(IB = AO = 8cm\) và \(FO = 12cm\)

Ta suy ra: \(\dfrac{8}{{12}} = \dfrac{{B'B}}{{B'O}} \Rightarrow \dfrac{{B'B}}{{B'O}} = \dfrac{2}{3}\)  (1)

+ Ta có: \(\Delta OAB \sim \Delta OA'B'\)

Ta suy ra: \(\dfrac{{OA}}{{OA'}} = \dfrac{{OB}}{{OB'}} = \dfrac{{AB}}{{A'B'}}\)  

Lại có: \(OB = OB' + BB'\)

Ta suy ra: \(\dfrac{{OA}}{{OA'}} = \dfrac{{AB}}{{A'B'}} = \dfrac{{OB' + BB'}}{{OB'}} = 1 + \dfrac{{BB'}}{{OB'}}\) (2)

 

Từ (1) và (2) ta suy ra: \(\dfrac{{OA}}{{OA'}} = \dfrac{{AB}}{{A'B'}} = 1 + \dfrac{2}{3} = \dfrac{5}{3}\)

Từ đây, ta suy ra:

- Khoảng cách từ ảnh đến thấu kính: \(OA' = \dfrac{{OA}}{{\dfrac{5}{3}}} = \dfrac{8}{{\dfrac{5}{3}}} = 4,8cm\)

- Chiều cao của ảnh: \(A'B' = \dfrac{{AB}}{{\dfrac{5}{3}}} = \dfrac{6}{{\dfrac{5}{3}}} = 3,6mm\)

Vậy, ảnh có chiều cao \(3,6mm\) (cao gấp \(0,6\) lần vật) và cách thấu kính một khoảng là \(4,8cm\)

 

 
Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved