1. Nội dung câu hỏi
Tính đạo hàm của các hàm số sau:
a) \(y = {2^{3x - {x^2}}};\)
b) \(y = {\log _3}\left( {4x + 1} \right).\)
2. Phương pháp giải
Sử dụng công thức \(\left( {{a^u}} \right)' = u'{a^u}\ln a;\left( {{{\log }_a}u} \right)' = \frac{{u'}}{{u\ln a}}\).
3. Lời giải chi tiết
a) \(y' = \left( {{2^{3x - {x^2}}}} \right)' = \left( {3x - {x^2}} \right)'{.2^{3x - {x^2}}}.\ln 2 = \left( {3 - 2x} \right){2^{3x - {x^2}}}.\ln 2\)
b) \(y' = {\log _3}\left( {4x + 1} \right) = \frac{{\left( {4x + 1} \right)'}}{{\left( {4x + 1} \right)\ln 3}} = \frac{4}{{\left( {4x + 1} \right)\ln 3}}\).
Chương 1. Trao đổi chất và chuyển hóa năng lượng ở sinh vật
Phần hai: Giáo dục pháp luật
PHẦN 1. LỊCH SỬ THẾ GIỚI CẬN ĐẠI (Tiếp theo)
Bài 5. Kiến thức phổ thông về phòng không nhân dân
Chuyên đề 1. Trường hấp dẫn
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11