GIẢI TÍCH - TOÁN 12 NÂNG CAO

Bài 97 trang 132 SGK giải tích 12 nâng cao

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c

Giải các bát phương trình sau:

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c

LG a

\(\eqalign{
{{1 - {{\log }_4}x} \over {1 + {{\log }_2}x}} \le {1 \over 2}\,; \cr } \)

Lời giải chi tiết:

ĐK: x > 0

Ta có \({\log _4}x = {1 \over 2}{\log _2}x\). Đặt \(t = {\log _2}x\)

Ta có bất phương trình:

\(\eqalign{
& {{1 - {1 \over 2}t} \over {1 + t}} - {1 \over 2} \le 0\cr& \Leftrightarrow {{2 - t - 1 - t} \over {2\left( {1 + t} \right)}} \le 0 \Leftrightarrow {{1 - 2t} \over {1 + t}} \le 0 \cr 
& \Leftrightarrow t < - 1\,\,\text{ hoặc }\,\,t \ge {1 \over 2}\cr& \Leftrightarrow {\log _2}x < - 1\,\,\text{ hoặc }\,\,{\log _2}x \ge {1 \over 2} \cr 
& \Leftrightarrow 0 < x < {1 \over 2}\,\,\text{ hoặc }\,\,x \ge \sqrt 2 \cr} \)

Vậy \(S = \left( {0;{1 \over 2}} \right) \cup \left[ {\sqrt 2 ; + \infty } \right)\)

Chú ý:

Các em cũng có thể đặt \({\log _4}x = t \) \(\Rightarrow {\log _2}x = 2{\log _4}x = 2t\) và được bất phương trình:

\(\begin{array}{l}
\frac{{1 - t}}{{1 + 2t}} \le \frac{1}{2} \Leftrightarrow \frac{{1 - t}}{{1 + 2t}} - \frac{1}{2} \le 0\\
\Leftrightarrow \frac{{2 - 2t - 1 - 2t}}{{2\left( {1 + 2t} \right)}} \le 0\\
\Leftrightarrow \frac{{1 - 4t}}{{2\left( {1 + 2t} \right)}} \le 0 \Leftrightarrow \left[ \begin{array}{l}
t \ge \frac{1}{4}\\
t < - \frac{1}{2}
\end{array} \right.\\
\Rightarrow \left[ \begin{array}{l}
{\log _4}x \ge \frac{1}{4}\\
{\log _4}x < - \frac{1}{2}
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x \ge {4^{\frac{1}{4}}} = {2^{\frac{1}{2}}} = \sqrt 2 \\
x < {4^{ - \frac{1}{2}}} = \frac{1}{{{4^{\frac{1}{2}}}}} = \frac{1}{2}
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x \ge \sqrt 2 \\
x < \frac{1}{2}
\end{array} \right.
\end{array}\)

LG b

\({\log _{{1 \over {\sqrt 5 }}}}\left( {{6^{x + 1}} - {{36}^x}} \right) \ge  - 2;\)

Lời giải chi tiết:

 Ta có \({\log _{{1 \over {\sqrt 5 }}}}\left( {{6^{x + 1}} - {{36}^x}} \right) \ge  - 2\)

\( \Leftrightarrow 0 < {6^{x + 1}} - {36^x} \le {\left( {{1 \over {\sqrt 5 }}} \right)^{ - 2}} = 5 \)

\(\Leftrightarrow \left\{ \matrix{
{6.6^x} - {36^x} > 0 \hfill \cr 
{6.6^x} - {36^x} \le 5 \hfill \cr} \right.\)

Đặt \(t = {6^x}\,\,\left( {t > 0} \right)\). Ta có hệ:

\(\left\{ \matrix{
6t - {t^2} > 0 \hfill \cr 
{t^2} - 6t + 5 \ge 0 \hfill \cr} \right. \)

\(\Leftrightarrow \left\{ \matrix{
0 < t < 6 \hfill \cr 
t \le 1\,\,\text{ hoặc }\,\,t \ge 5 \hfill \cr} \right. \)

\(\Leftrightarrow \left[ \matrix{
0 < t \le 1 \hfill \cr 
5 \le t < 6 \hfill \cr} \right. \)

\(\Leftrightarrow \left[ \matrix{
{6^x} \le 1 \hfill \cr 
5 \le {6^x} < 6 \hfill \cr} \right. \)

\(\Leftrightarrow \left[ \matrix{
x \le 0 \hfill \cr 
{\log _6}5 \le x < 1 \hfill \cr} \right.\)

Vậy \(S = \left( { - \infty ;0} \right] \cup \left[ {{{\log }_6}5;1} \right)\)

Cách trình bày khác:

ĐK: \({6^{x + 1}} - {36^x} > 0\) \( \Leftrightarrow {6.6^x} - {6^{2x}} > 0 \) \( \Leftrightarrow 6 - {6^x} > 0 \) \(  \Leftrightarrow {6^x} < 6 \Leftrightarrow x < 1\)

Khi đó, hệ bpt

\(\begin{array}{l}
\Leftrightarrow {6^{x + 1}} - {36^x} \le {\left( {\frac{1}{{\sqrt 5 }}} \right)^{ - 2}} = 5\\
\Leftrightarrow {6.6^x} - {\left( {{6^x}} \right)^2} \le 5\\
\Leftrightarrow {\left( {{6^x}} \right)^2} - {6.6^x} + 5 \ge 0\\
\end{array}\)

\(\Leftrightarrow \left[ \begin{array}{l}
{6^x} \ge 5\\
{6^x} \le 1
\end{array} \right.\)

\( \Leftrightarrow \left[ \begin{array}{l}
x \ge {\log _6}5\\
x \le 0
\end{array} \right.\)

Kết hợp ĐK ta được 

\(\Leftrightarrow \left[ \matrix{
x \le 0 \hfill \cr 
{\log _6}5 \le x < 1 \hfill \cr} \right.\)

Vậy \(S = \left( { - \infty ;0} \right] \cup \left[ {{{\log }_6}5;1} \right)\)

LG c

\({\log _{{1 \over 5}}}\left( {{x^2} - 6x + 18} \right) \) \(+ 2{\log _5}\left( {x - 4} \right) < 0.\)

Lời giải chi tiết:

Điều kiện: 

\(\left\{ \matrix{
{x^2} - 6x + 18 > 0 \hfill \cr 
x - 4 > 0 \hfill \cr} \right. \Leftrightarrow x > 4\)

\(\eqalign{
& {\log _{{1 \over 5}}}\left( {{x^2} - 6x + 18} \right) + 2{\log _5}\left( {x - 4} \right) < 0\cr&\Leftrightarrow  - {\log _5}\left( {{x^2} - 6x + 18} \right) + {\log _5}{\left( {x - 4} \right)^2} < 0\cr& \Leftrightarrow {\log _5}{\left( {x - 4} \right)^2} < {\log _5}\left( {{x^2} - 6x + 18} \right) \cr 
&  \Leftrightarrow {\left( {x - 4} \right)^2} < {x^2} - 6x + 18\cr& \Leftrightarrow {x^2} - 8x + 16 < {x^2} - 6x + 18\cr& \Leftrightarrow  - 2x < 2\cr& \Leftrightarrow x >- 1 \cr} \)

Kết hợp điều kiện ta có \(x > 4\)

Vậy \(S = \left( {4; + \infty } \right)\)

 

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved