1. Nội dung câu hỏi
Viết phương trình tiếp tuyến của đồ thị hàm số \(y = {x^3} + 3{x^2} - 1\) tại điểm có hoành độ bằng 1.
2. Phương pháp giải
Nếu hàm số \(y = f\left( x \right)\) có đạo hàm tại điểm \({x_0}\) thì phương trình tiếp tuyến của đồ thị hàm số tại điểm \(P\left( {{x_0};{y_0}} \right)\) là \(y - {y_0} = f'\left( {{x_0}} \right)\left( {x - {x_0}} \right),\) trong đó \({y_0} = f\left( {{x_0}} \right)\).
3. Lời giải chi tiết
Ta có \(y' = 3{x^2} + 6x \Rightarrow \) \(y'\left( 1 \right) = 9\)
Ngoài ra , \(f\left( 1 \right) = 3\) nên phương trình tiếp tuyến cần tìm là:
\(y - 3 = 9\left( {x - 1} \right)\) hay \(y = 9x - 6\).
SGK Ngữ văn 11 - Chân trời sáng tạo tập 2
PHẦN MỘT. LỊCH SỬ THẾ GIỚI CẬN ĐẠI (TIẾP THEO)
Unit 1: Health and Healthy lifestyle
Chủ đề 5: Đạo đức kinh doanh
Chủ đề 2: Kĩ thuật đánh cầu trên lưới
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11