Bài 1. Khái niệm về khối đa diện
Bài 2. Phép đối xứng qua mặt phẳng và sự bằng nhau của các khối đa diện
Bài 3. Phép vị tự và sự đồng dạng của các khối đa diện. Các khối đa diện đều
Bài 4. Thể tích của khối đa diện
Ôn tập chương I - Khối đa diện và thể tích của chúng
Câu hỏi trắc nghiệm chương I - Khối đa diện và thể tích của chúng
Trong không gian tọa độ Oxyz cho đường thẳng \(\Delta \) có phương trình \({{x - 1} \over 2} = {{y + 1} \over { - 1}} = {z \over 3}.\)
LG a
Viết phương trình hình chiếu của \(\Delta \) trên các mặt phẳng tọa độ.
Lời giải chi tiết:
Đường thẳng \(\Delta \) có phương trình tham số là:
\(\left\{ \matrix{
x = 1 + 2t \hfill \cr
y = - 1 - t \hfill \cr
z = 3t \hfill \cr} \right.\)
Vì điểm M(x, y, z) có hình chiếu trên (Oxy) là M’(x, y, 0) nên hình chiếu \({d_1}\) của \(\Delta \) trên (Oxy) có phương trình tham số là
\(\left\{ \matrix{
x = 1 + 2t \hfill \cr
y = - 1 + t \hfill \cr
z = 0 \hfill \cr} \right.\)
Hình chiếu \({d_2}\) của \(\Delta \) trên (Oyz) là
\(\left\{ \matrix{
x = 0 \hfill \cr
y = - 1 - t \hfill \cr
z = 3t \hfill \cr} \right..\)
Hình chiếu \({d_3}\) của \(\Delta \) trên (Oxz) là
\(\left\{ \matrix{
x = 1 + 2t \hfill \cr
y = 0 \hfill \cr
z = 3t \hfill \cr} \right..\)
LG b
Chứng minh rằng mặt phẳng \(x + 5y + z + 4 = 0\) đi qua đường thẳng \(\Delta \).
Lời giải chi tiết:
Lấy điểm \(M\left( {1 + 2t, - 1 - t,3t} \right) \in \Delta ,\) thay tọa độ của M vào phương trình \(mp\left( \alpha \right)\) ta có:
\(1 + 2t - 5\left( {1 + t} \right) + 3t + 4 = 0 \Rightarrow M \in \left( \alpha \right).\)
Vậy \(\Delta \subset \left( \alpha \right),\) tức \(mp\left( \alpha \right)\) đi qua \(\Delta \).
LG c
Tính khoảng cách giữa đường thẳng \(\Delta \) và các trục tọa độ.
Lời giải chi tiết:
\(\Delta \) qua điểm \(M\left( {1; - 1;0} \right)\) và có vectơ chỉ phương \(\overrightarrow u = \left( {2; - 1;3} \right).\)
Đường thẳng chứa trục Ox qua O(0; 0; 0) và có vectơ chỉ phương \(\overrightarrow i \left( {1;0;0} \right)\).
Khoảng cách giữa \(\Delta \) và trục Ox là:
\({h_1} = {{\left| {\left[ {\overrightarrow u ,\overrightarrow i } \right].\overrightarrow {OM} } \right|} \over {\left| {\left[ {\overrightarrow u ,\overrightarrow i } \right]} \right|}} = {{\left| { - 3} \right|} \over {\sqrt {{3^2} + {1^2}} }} = {{3\sqrt {10} } \over {10}}.\)
Khoảng cách giữa \(\Delta \) và trục Oy là:
\({h_2} = {{\left| {\left[ {\overrightarrow u ,\overrightarrow j } \right].\overrightarrow {OM} } \right|} \over {\left| {\left[ {\overrightarrow u ,\overrightarrow j } \right]} \right|}} = {{\left| { - 3} \right|} \over {\sqrt {{{\left( { - 3} \right)}^2} + {2^2}} }} = {{3\sqrt {13} } \over {13}}.\)
Khoảng cách giữa \(\Delta \) và trục Oz là:
\({h_3} = {{\left| {\left[ {\overrightarrow u ,\overrightarrow k } \right].\overrightarrow {OM} } \right|} \over {\left| {\left[ {\overrightarrow u ,\overrightarrow k } \right]} \right|}} = {{\left| 1 \right|} \over {\sqrt {{1^2} + {2^2}} }} = {{\sqrt 5 } \over 5}.\)
LG d
Viết phương trình đường vuông góc chung của hai đường thẳng \(\Delta \) và \(\Delta ':x = y = z.\)
Lời giải chi tiết:
Lấy \(P\left( {1 + 2t, - 1 - t,3t} \right) \in \Delta ,\,\Delta \) có vectơ chỉ phương \(\overrightarrow u = \left( {2; - 1;3} \right).\)
\(Q\left( {t',t',t'} \right) \in \Delta ',\,\,\Delta '\) có vectơ chỉ phương \(\overrightarrow {u'} \left( {1;1;1} \right).\)
Ta có \(\overrightarrow {QP} = \left( {1 + 2t - t', - 1 - t - t',3t - t'} \right).\)
PQ là đường vuông góc chung của \(\Delta \) và \(\Delta '\) khi và chỉ khi \(\overrightarrow {PQ} \bot \overrightarrow u \) và \(\overrightarrow {PQ} \bot \overrightarrow {u'} ,\) tức là:
\(\eqalign{
& \left\{ \matrix{
\overrightarrow {QP} .\overrightarrow u = 0 \hfill \cr
\overrightarrow {QP} .\overrightarrow {u'} = 0 \hfill \cr} \right. \cr &\Leftrightarrow \left\{ \matrix{
2\left( {1 + 2t - t'} \right) - \left( { - 1 - t - t'} \right) + 3\left( {3t - t'} \right) = 0 \hfill \cr
1 + 2t - t' - 1 - t - t' + 3t - t' = 0 \hfill \cr} \right. \cr
& \Leftrightarrow \left\{ \matrix{
14t - 4t' = - 3 \hfill \cr
4t - 3t' = 0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
t = - {9 \over {26}} \hfill \cr
t' = - {6 \over {13}} \hfill \cr} \right.. \cr} \)
Do đó \(Q\left( { - {6 \over {13}}; - {6 \over {13}}; - {6 \over {13}}} \right)\) và \(\overrightarrow {QP} = \left( {{{20} \over {16}},{{ - 5} \over {16}},{{ - 15} \over {16}}} \right) = {5 \over {16}}\left( {4; - 1; - 3} \right).\)
Đường thẳng PQ đi qua Q và có vectơ chỉ phương \(\overrightarrow v = \left( {4; - 1; - 3} \right).\)
Do đó PQ có phương trình tham số là:
\(\left\{ \matrix{
x = - {6 \over {13}} + 4t \hfill \cr
y = - {6 \over {13}} - t \hfill \cr
z = - {6 \over {13}} - 3t \hfill \cr} \right..\)
LG e
Viết phương trình đường thẳng song song với Oz, cắt cả \(\Delta \) và ’\(\Delta '\).
Lời giải chi tiết:
Lấy điểm \(P\left( {1 + 2t, - 1 - t,3t} \right) \in \Delta .\)
\(Q\left( {t',t',t'} \right) \in \Delta '.\)
PQ // Oz \( \Leftrightarrow \overrightarrow {QP} \) cùng phương với
\(\overrightarrow k = \left( {0;0;1} \right) \Leftrightarrow \left\{ \matrix{
1 + 2t - t' = 0 \hfill \cr
- 1 - t - t' = 0 \hfill \cr} \right.\) \( \Leftrightarrow \left\{ \matrix{
t = - {2 \over 3} \hfill \cr
t' = - {1 \over 3}. \hfill \cr} \right.\)
Vậy PQ đi qua \(Q\left( { - {1 \over 3}, - {1 \over 3}, - {1 \over 3}} \right)\) và có vectơ chỉ phương \(\overrightarrow k = \left( {0;0;1} \right)\) nên PQ có phương trình tham số là:
\(\left\{ \matrix{
x = - {1 \over 3} \hfill \cr
y = - {1 \over 3} \hfill \cr
z = - {1 \over 3} + t \hfill \cr} \right..\)
PHẦN NĂM. DI TRUYỀN HỌC
CHƯƠNG II. SÓNG CƠ VÀ SÓNG ÂM
Đề cương ôn tập học kì 1 - Vật lí 12
Bài giảng ôn luyện kiến thức cuối học kì 2 môn Hóa học lớp 12
Bài giảng ôn luyện kiến thức cuối học kì 2 môn Sinh học lớp 12