PHẦN ĐẠI SỐ - TOÁN 9 TẬP 2

Bài 9 trang 12 sgk Toán 9 tập 2

Đề bài

Đoán nhận số nghiệm của mỗi hệ phương trình sau, giải thích vì sao:

a) \(\left\{\begin{matrix} x + y = 2 & & \\ 3x + 3y = 2 & & \end{matrix}\right.\);                 

b) \(\left\{\begin{matrix} 3x -2 y = 1 & & \\ -6x + 4y = 0 & & \end{matrix}\right.\)

Phương pháp giải - Xem chi tiết

Đưa hệ phương trình đã cho về dạng 

\(\left\{ \begin{array}{l}y = ax + b\,\left( d \right)\\y = a'x + b'\left( {d'} \right)\end{array} \right.\)

Ta so sánh các hệ số \(a,\ b\) và \(a',\ b'\).

Nếu \(a=a',\ b \ne b'\) thì \(d\) song song với \(d' \Rightarrow \)  hệ vô nghiệm.

Lời giải chi tiết

a) Ta có:

\(\left\{\begin{matrix} x + y = 2 & & \\ 3x + 3y = 2 & & \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} y = -x + 2 & & \\ 3y = -3x+2 & & \end{matrix}\right. \)

\(\Leftrightarrow \left\{\begin{matrix} y = -x + 2 \, (d) & & \\ y = -x + \dfrac{2}{3} \, (d')& & \end{matrix}\right.\)

Suy ra \(a = -1,\ a' = -1\);  \(b = 2,\ b' = \dfrac{2}{3}\) nên \(a = a', b ≠ b'.\)

Do đó hai đường thẳng \((d)\) và \((d')\) song song nhau nên hệ đã cho vô nghiệm.

b) Ta có:

\(\left\{\begin{matrix} 3x -2 y = 1 & & \\ -6x + 4y = 0 & & \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} 2y = 3x - 1 & & \\ 4y = 6x& & \end{matrix}\right. \)

\(\Leftrightarrow \left\{\begin{matrix} y = \dfrac{3}{2}x - \dfrac{1}{2} \,(d) & & \\ y = \dfrac{3}{2}x\, (d')& & \end{matrix}\right.\)

Ta có: \(a = \dfrac{3}{2}, a' = \dfrac{3}{2}\), \(b = -\dfrac{1}{2}, b' = 0\) nên \(a = a', b ≠b'\).

Do đó hai đường thẳng \((d)\) và \((d')\) song song với nhau nên hệ đã cho vô nghiệm. 

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved