PHẦN ĐẠI SỐ - TOÁN 8 TẬP 1
PHẦN ĐẠI SỐ - TOÁN 8 TẬP 1

Bài 82 trang 33 sgk toán 8 tập 1

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a.
LG b.

Chứng minh:

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a.
LG b.

LG a.

LG a.

\({x^2} - 2xy + {y^2} + 1 > 0\)  với mọi số thực \(x\) và \(y\);

Phương pháp giải:

Áp dụng:

- Hằng đẳng thức bình phương một hiệu.

- Tính chất: \({\left( {A - B} \right)^2} \geqslant 0\) với mọi số thực \(A,B\)

Lời giải chi tiết:

Ta có:

\({x^2} - 2xy + {y^2} + 1\)

\(= \left( {{x^2} - 2xy + {y^2}} \right) + 1\)

\(={\left( {x - y} \right)^2} + 1 \)

Do \({\left( {x - y} \right)^2} \ge 0\) với mọi \(x, y\).

Nên \({\left( {x - y} \right)^2} +1\ge 1>0\) với mọi \(x, y\).

Vậy \({x^2} - 2xy + {y^2} + 1 > 0\)  với mọi số thực \(x\) và \(y\). 

LG b.

LG b.

\(x - {x^2} - 1 < 0\)  với mọi số thực \(x\).

Phương pháp giải:

Áp dụng:

- Hằng đẳng thức bình phương một hiệu.

- Tính chất: \({\left( {A - B} \right)^2} \geqslant 0\) với mọi số thực \(A,B\)

Lời giải chi tiết:

Ta có:

\(x - {x^2} - 1\)

\(=  - \left( {{x^2} - x + 1} \right)\)

\( =  - \left[ {{x^2} - 2.x.\dfrac{1}{2} + {{\left( {\dfrac{1}{2}} \right)}^2} + \dfrac{3}{4}} \right]\)

\(=  - \left[ {{x^2} - 2x.\dfrac{1}{2} + {{\left( {\dfrac{1}{2}} \right)}^2}} \right] - \dfrac{3}{4}\)

\( =  - {\left( {x - \dfrac{1}{2}} \right)^2} - \dfrac{3}{4} \)   

Do \({\left( {x - \dfrac{1}{2}} \right)^2} \geqslant 0\) với mọi \(x\) nên \( - {\left( {x - \dfrac{1}{2}} \right)^2} \leqslant 0\) với mọi \(x\).

Suy ra \( - {\left( {x - \dfrac{1}{2}} \right)^2} - \dfrac{3}{4}\le - \dfrac{3}{4}<0\) với mọi \(x\),

Vậy \(x - {x^2} - 1 < 0\)  với mọi số thực \(x\).

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved