Bài 8 trang 224 Sách bài tập Hình học lớp 12 Nâng cao.

Lựa chọn câu hỏi để xem giải nhanh hơn
LG 1
LG 2

Cho hình chóp S.ABC có đáy ABC là tam giác cân, AB = AC = a ; mp(SBC)\( \bot \)mp(ABC) và SA = SB = a ;

Lựa chọn câu hỏi để xem giải nhanh hơn
LG 1
LG 2

LG 1

Chứng minh rằng SBC là tam giác vuông.

Lời giải chi tiết:

(h.l 12a)

        

Gọi I là trung điểm của BC, ta có AI \( \bot \) BC. Do (SBC) \( \bot \) (ABC) nên AI \( \bot \) mp(SBC), suy ra \(\Delta \)SAI vuông tại I.

Các tam giác vuông SAIBAI có IA chung, AB = AS, do đó IB = IS, mặt khác IB = IC, suy ra tam giác SBC vuông ở S.

LG 2

Tính thể tích của khối cầu ngoại tiếp hình chóp S.ABC biết \(SC = {{3a} \over 2}.\)

Lời giải chi tiết:

Vì IB = IC = IS và AI \( \bot \) (SBC) nên tâm O của mặt cầu ngoại tiếp hình chóp S.ABC thuộc đường thẳng AI, suy ra O là tâm đường tròn ngoại tiếp tam giác cân ABC và bán kính R của mặt cầu ngoại tiếp S.ABC cũng là bán kính đường tròn ngoại tiếp tam giác ABC.

Gọi J là giao điểm thứ hai của AI (h.l 12b) và đường tròn ngoại tiếp tam giác ABC thì AJ = 2R và AB2 = AI.AJ hay a2 = AI.2R

 \( \Rightarrow R = {{{a^2}} \over {2AI}}.\)           (1)

Mặt khác

\(B{C^2} = S{B^2} + {\rm{ }}S{C^2} = {a^2} + {{9{a^2}} \over 4} = {{13{a^2}} \over 4}\)

Và \(A{I^2} = A{B^2} - B{I^2} = {a^2} - {{B{C^2}} \over 4} \)

               \(= {a^2} - {{13{a^2}} \over {16}} = {{3{a^2}} \over {16}} \Rightarrow AI = {{a\sqrt 3 } \over 4}.\) (2)

Thay (2) vào (1) ta có \(R{\rm{ }} = {{2a} \over {\sqrt 3 }}.\)

Vậy thể tích khối cầu ngoại tiếp hình chóp S.ABC là \({4 \over 3}\pi {{8{a^3}} \over {3\sqrt 3 }} = {{32\pi {a^3}} \over {9\sqrt 3 }}.\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved