Đề bài
Cho OM là một bán kính của đường tròn (O). Vẽ đường tròn (O’) có đường kính OM. Một bán kính OA của đường tròn (O) cắt đường tròn (O’) tại điểm B. Chứng minh cung nhỏ của (O) và cung nhỏ của (O’) có độ dài bằng nhau.
Phương pháp giải - Xem chi tiết
Đặt \(\widehat {AOM} = \alpha \), tính số đo \(\widehat {BO'M}\).
Sử dụng công thức tính độ dài cung n0 của đường tròn có bán kính R là \(l = \dfrac{{\pi Rn}}{{180}}\).
Lời giải chi tiết
Đặt \(\widehat {AOM} = \alpha \).
Xét tam giác OO’B có: \(O'O = O'B \Rightarrow \Delta OO'B\)cân tại O’ \( \Rightarrow \widehat {O'OB} = \widehat {O'BO} = \alpha \)
\( \Rightarrow \widehat {BO'M} = \widehat {O'OB} + \widehat {O'BO} = 2\alpha \) (góc ngoài bằng tổng 2 góc trong không kề với nó).
Xét đường tròn \(\left( O \right)\) ta có \({l_{MA}} = \dfrac{{\pi OM\alpha }}{{180}}\).
Xét đường tròn \(\left( {O'} \right)\) có \({l_{MB}} = \dfrac{{\pi O'O.2\alpha }}{{180}} = \dfrac{{\pi \left( {2O'O} \right)\alpha }}{{180}} = \dfrac{{\pi OM\alpha }}{{180}}\)
Vậy \({l_{MA}} = {l_{MB}}\).
Bài 8: Năng động, sáng tạo
PHẦN HÌNH HỌC - VỞ BÀI TẬP TOÁN 9 TẬP 1
CHƯƠNG III. HỆ PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN
Bài 4: Bảo vệ hòa bình
CHƯƠNG 1. CÁC LOẠI HỢP CHẤT VÔ CƠ