Bài 1. Căn bậc hai
Bài 2. Căn thức bậc hai và hằng đẳng thức
Bài 3. Liên hệ giữa phép nhân và phép khai phương
Bài 4. Liên hệ giữa phép chia và phép khai phương
Bài 5. Bảng Căn bậc hai
Bài 6. Biến đổi đơn giản biểu thức chứa căn thức bậc hai
Bài 7. Biến đổi đơn giản biểu thức chứa căn thức bậc hai (tiếp theo)
Bài 8. Rút gọn biểu thức chứa căn bậc hai
Bài 9. Căn bậc ba
Ôn tập chương I – Căn bậc hai. Căn bậc ba
Đề kiểm tra 15 phút - Chương I - Đại số 9
Đề kiểm tra 45 phút (1 tiết) - Chương I - Đại số 9
Bài 1. Nhắc lại và bổ sung các khái niệm về hàm số
Bài 2. Hàm số bậc nhất
Bài 3. Đồ thị của hàm số y = ax + b (a ≠ 0)
Bài 4. Đường thẳng song song và đường thẳng cắt nhau
Bài 5. Hệ số góc của đường thẳng y = ax + b (a ≠ 0).
Ôn tập chương II – Hàm số bậc nhất
Đề kiểm tra 15 phút - Chương 2 - Đại số 9
Đề kiểm tra 45 phút (1 tiết) - Chương 2 - Đại số 9
Đề bài
Cho biểu thức
\(\displaystyle Q = {a \over {\sqrt {{a^2} - {b^2}} }} - \left( {1 + {a \over {\sqrt {{a^2} - {b^2}} }}} \right):{b \over {a - \sqrt {{a^2} - {b^2}} }}\) với a > b > 0
a) Rút gọn Q
b) Xác định giá trị của Q khi a = 3b
Phương pháp giải - Xem chi tiết
a) Biến đổi trong ngoặc trước sau đó áp dụng hằng đẳng thức \(\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}\) để biến đổi và rút gọn Q.
b) Thay \(a=3b\) vào biểu thức đã rút gon để tính toán.
Lời giải chi tiết
a)
\(\begin{array}{l}
\dfrac{a}{{\sqrt {{a^2} - {b^2}} }} - \left( {1 + \dfrac{a}{{\sqrt {{a^2} - {b^2}} }}} \right):\dfrac{b}{{a - \sqrt {{a^2} - {b^2}} }}\\
= \dfrac{a}{{\sqrt {{a^2} - {b^2}} }} - \dfrac{{a + \sqrt {{a^2} - {b^2}} }}{{\sqrt {{a^2} - {b^2}} }}.\dfrac{{a - \sqrt {{a^2} - {b^2}} }}{b}\\ = \dfrac{a}{{\sqrt {{a^2} - {b^2}} }} - \dfrac{{{a^2} -\left( \sqrt{ {{a^2} - {b^2}}} \right)^2}}{{b\sqrt {{a^2} - {b^2}} }}\\
= \dfrac{a}{{\sqrt {{a^2} - {b^2}} }} - \dfrac{{{a^2} - \left( {{a^2} - {b^2}} \right)}}{{b\sqrt {{a^2} - {b^2}} }}\\ = \dfrac{a}{{\sqrt {{a^2} - {b^2}} }} - \dfrac{b^2}{b.{\sqrt {{a^2} - {b^2}} }}\\
= \dfrac{a}{{\sqrt {{a^2} - {b^2}} }} - \dfrac{b}{{\sqrt {{a^2} - {b^2}} }}\\
= \dfrac{{a - b}}{{\sqrt {{a^2} - {b^2}} }}\\
= \dfrac{{\sqrt {a - b} .\sqrt {a - b} }}{{\sqrt {a - b} .\sqrt {a + b} }}\, (do\,\, a>b>0)\\
= \dfrac{{\sqrt {a - b} }}{{\sqrt {a + b} }}
\end{array}\)
Vậy \(Q= \dfrac{{\sqrt {a - b} }}{{\sqrt {a + b} }}.\)
b) Thay \(a = 3b\) vào \(Q= \dfrac{{\sqrt {a - b} }}{{\sqrt {a + b} }}\) ta được:
\(Q=\dfrac{{\sqrt {3b - b} }}{{\sqrt {3b + b} }} = \dfrac{{\sqrt {2b} }}{{\sqrt {4b} }} \\= \dfrac{{\sqrt {2b} }}{{\sqrt 2 .\sqrt {2b} }} = \dfrac{1}{{\sqrt 2 }} = \dfrac{{\sqrt 2 }}{2}\)
Đề thi vào 10 môn Văn Quảng Trị
Bài 9. Sự phát triển và phân bố lâm nghiệp, thủy sản
Đề kiểm tra 1 tiết - Học kì 2 - Sinh 9
Đề thi vào 10 môn Văn Bình Định
SỰ PHÂN HÓA LÃNH THỔ