1. Nội dung câu hỏi
Cho điểm S nằm ngoài mặt phẳng (P), có hình chiếu H trên (P). Với mỗi điểm M bất kì (không trùng H) trên mặt phẳng (P), ta gọi đoạn thẳng SM là đường xiên, đoạn thẳng HM là hình chiếu trên (P) của đường xiên đó. Chứng minh rằng:
a) Hai đường xiên SM và SM' bằng nhau khi và chỉ khi hai hình chiếu HM và HM' tương ứng của chúng bằng nhau;
b) Đường xiên SM lớn hơn đường xiên SM' nếu hình chiếu HM lớn hơn hình chiếu HM'.
2. Phương pháp giải
Sử dụng định lí Pytago trong tam giác vuông.
3. Lời giải chi tiết
a)
+) Giả sử SM = SM’
Xét tam giác SHM vuông tại H có
\(S{M^2} = S{H^2} + M{H^2}\) (định lí Pytago)
Xét tam giác SHM’ vuông tại H có
\(S{M'^2} = S{H^2} + M'{H^2}\) (định lí Pytago)
Mà SM = SM’ nên MH = MH’
+) Giả sử HM = HM’
Xét tam giác SHM vuông tại H có
\(S{M^2} = S{H^2} + M{H^2}\) (định lí Pytago)
Xét tam giác SHM’ vuông tại H có
\(S{M'^2} = S{H^2} + M'{H^2}\) (định lí Pytago)
Mà HM = HM’ nên SM = SM’
b) \(\begin{array}{l}MH > M'H \Leftrightarrow M{H^2} > M'{H^2}\\ \Leftrightarrow M{H^2} + S{H^2} > M'{H^2} + S{H^2} \Leftrightarrow S{M^2} > S{{M'}^2} \Leftrightarrow SM > SM'\end{array}\)
Chủ đề 2. Vật liệu cơ khí
Unit 8: Cities of the future
Unit 3: Cities of the future
Bài giảng ôn luyện kiến thức giữa học kì 2 môn Toán lớp 11
Chương 1. Cách mạng tư sản và sự phát triển của chủ nghĩa tư bản
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11