Giải bài 7 trang 86 SGK Toán 10 tập 2 – Cánh diều
Đề bài
Có hai con tàu A và B cùng xuất phát từ hai bến, chuyển động đều theo đường thẳng ngoài biển. Trên màn hình ra đa của trạm điều khiển (được coi như mặt phẳng toạ độ Oxy với đơn vị trên các trục tính theo ki-lô-mét), sau khi xuất phát t (giờ) (\(t \ge 0\)), vị trí
của tàu A có toạ độ được xác định bởi công thức \(\left\{ \begin{array}{l}x = 3 - 35t\\y = - 4 + 25t\end{array} \right.\) ,vị trí của tàu B có toạ độ là (4 – 30t; 3 – 40t).
a) Tính côsin góc giữa hai đường đi của hai tàu A và B.
b) Sau bao lâu kể từ thời điểm xuất phát hai tàu gần nhau nhất?
c) Nếu tàu A đứng yên ở vị trí ban đầu, tàu B chạy thì khoảng cách ngắn nhất giữa hai tàu bằng bao nhiêu?
Phương pháp giải - Xem chi tiết
a) Trong mặt phẳng toạ độ, cho hai đường thẳng \({\Delta _1}\) và \({\Delta _2}\) có vectơ chỉ phương lần lượt là \(\overrightarrow {{u_1}} = {\rm{ }}\left( {{a_1};{\rm{ }}{b_1}} \right),{\rm{ }}\overrightarrow {{u_2}} {\rm{ }} = {\rm{ }}\left( {{a_2};{b_2}} \right)\) ta có:
\(\cos \left( {{\Delta _1},{\Delta _2}} \right) = \left| {\cos \left( {\overrightarrow {{u_1}} ;\overrightarrow {{u_2}} } \right)} \right| = \frac{{\left| {{a_1}{a_2} + {b_1}{b_2}} \right|}}{{\sqrt {a_1^2 + b_1^2} .\sqrt {a_2^2 + b_2^2} }}.\)
b) Bước 1: Trong mặt phẳng tọa độ Oxy, cho đường thẳng \(\Delta \) có phương trình \({\rm{a}}x + by + c = 0\left( {{a^2} + {b^2} > 0} \right)\) và điểm \(M\left( {{x_o};{y_0}} \right)\). Khoảng cách từ điểm M đến đường thẳng \(\Delta \), kí hiệu là \(d\left( {M,\Delta } \right)\) được tính bởi công thức: \(d\left( {M,\Delta } \right) = \frac{{\left| {{\rm{a}}{x_o} + b{y_o} + c} \right|}}{{\sqrt {{a^2} + {b^2}} }}\)
Bước 2: Đánh giá theo tham số t
c) Trong mặt phẳng tọa độ Oxy, cho đường thẳng \(\Delta \) có phương trình \({\rm{a}}x + by + c = 0\left( {{a^2} + {b^2} > 0} \right)\) và điểm \(M\left( {{x_o};{y_0}} \right)\). Khoảng cách từ điểm M đến đường thẳng \(\Delta \), kí hiệu là \(d\left( {M,\Delta } \right)\) được tính bởi công thức: \(d\left( {M,\Delta } \right) = \frac{{\left| {{\rm{a}}{x_o} + b{y_o} + c} \right|}}{{\sqrt {{a^2} + {b^2}} }}\)
Lời giải chi tiết
a) Tàu A di chuyển theo hướng vecto \(\overrightarrow {{u_1}} = \left( { - 35;25} \right)\)
Tàu B di chuyển theo hướng vecto \(\overrightarrow {{u_2}} = \left( { - 30; - 40} \right)\)
Gọi \(\alpha \) là góc giữa hai đường đi của hai tàu, ta có:
\(\cos \alpha = \left| {\cos \left( {\overrightarrow {{u_1}} ;\overrightarrow {{u_2}} } \right)} \right| = \frac{{\left| {\left( { - 35} \right).\left( { - 30} \right) + 25.\left( { - 40} \right)} \right|}}{{\sqrt {{{\left( { - 35} \right)}^2} + {{25}^2}} .\sqrt {{{\left( { - 30} \right)}^2} + {{\left( { - 40} \right)}^2}} }} = \frac{1}{{5\sqrt {74} }}.\)
b) Sau t giờ, vị trí của tàu A là điểm M có tọa độ là: \(M\left( {3 - 35t; - 4 + 25t} \right)\)
Sau t giờ, vị trí của tàu B là điểm N có tọa độ là: \(N\left( {4 - 30t;3 - 40t} \right)\)
Do đó, \(\overrightarrow {MN} = \sqrt {{{\left( {1 + 5t} \right)}^2} + {{\left( {7 - 65t} \right)}^2}} = \sqrt {4250{t^2} - 900t + 50} = \sqrt {4250{{\left( {t - \frac{9}{{85}}} \right)}^2} + \frac{{40}}{{17}}} \ge \sqrt {\frac{{40}}{{17}}} \approx 1,53\left( {km} \right)\)
Suy ra MN nhỏ nhất xấp xỉ 1,53km khi \(t = \frac{9}{{85}}\)
Vậy sau \(\frac{9}{{85}}\) giờ kể từ thời điểm xuất phát thì hai tàu gần nhau nhất và cách nhau 1,53km
c) Vị trí ban đầu của tàu A tại \({M_o}\) ứng với \(t = 0\) , khi đó \({M_o}\left( {3; - 4} \right)\)
Tàu B di chuyển theo đường thẳng có vecto pháp tuyến \(\overrightarrow n = \left( {40; - 30} \right)\) và đi qua điểm \(K\left( {4;3} \right)\) Phương trình tổng quát của là: \(40\left( {x - 4} \right) - 30\left( {y - 3} \right) = 0 \Leftrightarrow 4x - 3y - 7 = 0\) \(\Delta \)
Ta có: \(d\left( {{M_o},\Delta } \right) = \frac{{\left| {4.3 - 3.\left( { - 4} \right) - 7} \right|}}{{\sqrt {{4^2} + {{\left( { - 3} \right)}^2}} }} = \frac{{17}}{5} = 3,4\left( {km} \right)\)
Vậy nếu tàu A đứng yên ở vị trí ban đầu còn tàu B di chuyển thì khoảng cách ngắn nhất giữa hai tàu bằng 3,4km.
Chủ đề 6: Lập kế hoạch tài chính cá nhân
Đề khảo sát chất lượng đầu năm
Thiết kế và công nghệ
Môn cầu lông - KNTT
Đề kiểm tra giữa học kì 2
Chuyên đề học tập Toán - Cánh diều Lớp 10
Đề thi, đề kiểm tra Toán lớp 10 - Kết nối tri thức
Đề thi, đề kiểm tra Toán lớp 10 - Chân trời sáng tạo
Đề thi, đề kiểm tra Toán lớp 10 - Cánh diều
Bài giảng ôn luyện kiến thức môn Toán lớp 10
Chuyên đề học tập Toán - Chân trời sáng tạo Lớp 10
Chuyên đề học tập Toán - Kết nối tri thức Lớp 10
Lý thuyết Toán Lớp 10
SBT Toán - Cánh Diều Lớp 10
SBT Toán - Chân trời sáng tạo Lớp 10
SBT Toán - Kết nối tri thức Lớp 10
SGK Toán - Chân trời sáng tạo Lớp 10
SGK Toán - Kết nối tri thức Lớp 10