PHẦN HÌNH HỌC - TOÁN 8 TẬP 1

Bài 7 trang 71 SGK Toán 8 tập 1

Đề bài

Tìm \(x\) và \(y\) trên hình \(21\), biết rằng \(ABCD\) là hình thang có đáy là \(AB\) và \(CD.\)

Phương pháp giải - Xem chi tiết

Áp dụng các tính chất của một đường thẳng cắt hai đường thẳng song song: hai góc trong cùng phía bù nhau, hai góc đồng vị bằng nhau, hai góc so le trong bằng nhau.

Lời giải chi tiết

Vì \(ABCD\) là hình thang có đáy là \(AB\) và \(CD\) nên \(AB//CD\)

\(a)\) Ta có: \(AB//DC\) (chứng minh trên) 

\(\Rightarrow \widehat A +\widehat D=180^0\) (hai góc trong cùng phía bù nhau)

\(\Rightarrow x + {80^0} = {180^0}\) 

\(\Rightarrow x = {180^0} - {80^0} = {100^0}\)

Ta có: \(AB//DC\) (chứng minh trên)

\(\Rightarrow \widehat C +\widehat B=180^0\) (hai góc trong cùng phía bù nhau)

\(\Rightarrow y + {40^0} = {180^0}\)

\(\Rightarrow y = {180^0} - {40^0} = {140^0}\)

\(b)\) Vì \(AB//DC\) (chứng minh trên)

\(\Rightarrow x ={70^0} \) (hai góc đồng vị bằng nhau)

\(\Rightarrow y ={50^0} \) (hai góc so le trong bằng nhau)

\(c)\) Ta có \(AB//DC\) (chứng minh trên)

\( \Rightarrow \widehat B + \widehat C = {180^0}\) (hai góc trong cùng phía bù nhau)

\(\Rightarrow x + {90^0} = {180^0}\)

\(\Rightarrow x = {180^0} - {90^0} = {90^0}\)

Ta có \(AB//DC\) (chứng minh trên)

\(\Rightarrow \widehat D + \widehat A = {180^0}\) (hai góc trong cùng phía bù nhau)

\( \Rightarrow y + {65^0} = {180^0}\)

\(\Rightarrow y = {180^0} - {65^0} = {115^0}\)

 

 
Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved