PHẦN ĐẠI SỐ - VỞ BÀI TẬP TOÁN 9 TẬP 2

Bài 27 trang 66 Vở bài tập toán 9 tập 2

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c

Giải các phương trình:

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c

LG a

LG a

\(\dfrac{{\left( {x + 3} \right)\left( {x - 3} \right)}}{3} + 2 = x\left( {1 - x} \right)\)

Phương pháp giải:

Bước 1. Tìm điều kiện xác định của ẩn của phương trình.

Bước 2. Quy đồng mẫu thức hai vế rồi khử mẫu.

Bước 3. Giải phương trình vừa nhận được ở bước 2.

Bước 4. So sánh các nghiệm tìm được ở bước 3 với điều kiện xác định và kết luận

Lời giải chi tiết:

\(\dfrac{{\left( {x + 3} \right)\left( {x - 3} \right)}}{3} + 2 = x\left( {1 - x} \right)\)\( \Leftrightarrow \dfrac{{{x^2} - 9}}{3} + \dfrac{6}{3} \)\(= \dfrac{{3x\left( {1 - x} \right)}}{3}\)

\( \Leftrightarrow {x^2} - 9 + 6 = 3x - 3{x^2}\)\( \Leftrightarrow 4{x^2} - 3x - 3 = 0\)

\(\Delta  = {\left( { - 3} \right)^2} - 4.4\left( { - 3} \right) = 57 > 0\)

Phương trình có hai nghiệm \(\left[ \begin{array}{l}x = \dfrac{{3 + \sqrt {57} }}{8}\\x = \dfrac{{3 - \sqrt {57} }}{8}\end{array} \right.\)

LG b

LG b

\(\dfrac{{x + 2}}{{x - 5}} + 3 = \dfrac{6}{{2 - x}}\)

Phương pháp giải:

Bước 1. Tìm điều kiện xác định của ẩn của phương trình.

Bước 2. Quy đồng mẫu thức hai vế rồi khử mẫu.

Bước 3. Giải phương trình vừa nhận được ở bước 2.

Bước 4. So sánh các nghiệm tìm được ở bước 3 với điều kiện xác định và kết luận

Lời giải chi tiết:

Điều kiện \(x \ne 2\) và \(x \ne 5\)

Khử mẫu và biến đổi:

\( (x + 2)(2 – x) + 3(x – 5)(2 – x) = 6(x – 5)\) 

\(\Leftrightarrow 4 - {x^2} + 3\left( {2x - {x^2} - 10 + 5x} \right) = 6x - 30\)

\( \Leftrightarrow 4{\rm{  - }}{x^2}{\rm{  - }}3{x^2} + 21x{\rm{  - }}30 = 6x{\rm{  - }}30\)

\(\Leftrightarrow 4{x^2}{\rm{  - }}15x{\rm{  - }}4 = 0\)

\(\Delta  = {\left( { - 15} \right)^2} - 4.4.\left( { - 4} \right) = 289 > 0\)\( \Rightarrow \sqrt \Delta   = 17\)

Phương trình có hai nghiệm \({x_1} = \dfrac{{15 + 17}}{8} = 4;\) \({x_2} = \dfrac{{15 - 17}}{8} =  - \dfrac{1}{4}\)

Hai giái trị \({x_1};{x_2}\) đều thỏa mãn điều kiện của ẩn

Vậy phương trình có nghiệm \(x = 4;x =  - \dfrac{1}{4}.\)

LG c

LG c

\(\dfrac{4}{{x + 1}} = \dfrac{{ - {x^2} - x + 2}}{{\left( {x + 1} \right)\left( {x + 2} \right)}}\) 

Phương pháp giải:

Bước 1. Tìm điều kiện xác định của ẩn của phương trình.

Bước 2. Quy đồng mẫu thức hai vế rồi khử mẫu.

Bước 3. Giải phương trình vừa nhận được ở bước 2.

Bước 4. So sánh các nghiệm tìm được ở bước 3 với điều kiện xác định và kết luận

Lời giải chi tiết:

Điều kiện \(x \ne  - 2\) và \(x \ne  - 1\)

Khử mẫu và biến đổi:

\(4\left( {x + 2} \right) =  - {x^2} - x + 2\)

\( \Leftrightarrow  - {x^2} - x + 2 = 4x + 8\)\( \Leftrightarrow {x^2} + 5x + 6 = 0\)

\(\Delta  = {5^2} - 4.1.6 = 1 > 0\)

Phương trình có hai nghiệm \(\left[ \begin{array}{l}x = \dfrac{{ - 5 + 1}}{2} =  - 2\\x = \dfrac{{ - 5 - 1}}{2} =  - 3\end{array} \right.\)

Vì \(x =  - 2\) không thỏa mãn điều kiện của ẩn nên phương trình chỉ có một nghiệm \(x =  - 3.\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved