Bài 7 trang 224 Sách bài tập Hình học lớp 12 Nâng cao.

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c

Trong không gian cho các điểm A, B, C lần lượt thuộc các tia Ox, Oỵ, Oz vuông góc với nhau từng đôi một sao cho \(OA = a\;(a > {\rm{ }}0),OB = a\sqrt 2 ,\) \(OC{\rm{ }} = {\rm{ }}c{\rm{ }}\;(c{\rm{ }} > 0).\) Gọi D là đỉnh đối diện với O của hình chữ nhật AOBD và M là trung điểm của đoạn BC. (P) là mặt phẳng đi qua AM và cắt mặt phẳng (OCD) theo một đường thẳng vuông góc với đường thẳng AM.

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c

LG a

Gọi E là giao điểm của (P) với đường thẳng OC, tính độ dài đoạn thẳng OE.

Lời giải chi tiết:

(h.111)

         

Cách 1: Giả sử I là giao điểm của OD và ABF là giao điểm củá mp(P) với CD. Khi đó dễ thấy ba đường thẳng EF, AM và CI đồng quy tại trọng tâm G của tam giác ABC.

Đặt \(\overrightarrow {OE} {\rm{ }} = {\rm{ }}k.\overrightarrow {OC} .\)

Từ giả thiết GA \( \bot \) GE, ta có \(\overrightarrow {GA} .\overrightarrow {GE}  = 0.\)

Mặt khác \(\overrightarrow {GA} .\overrightarrow {GE}  = \left( {\overrightarrow {OA}  - \overrightarrow {OG} } \right).\left( {\overrightarrow {OE}  - \overrightarrow {OG} } \right)\)

\( = \left[ {\overrightarrow {OA}  - {1 \over 3}\left( {\overrightarrow {OA}  + \overrightarrow {OB}  + \overrightarrow {OC} } \right)} \right].\)

\(\left[ {k\overrightarrow {OC}  - {1 \over 3}\left( {\overrightarrow {OA}  + \overrightarrow {OB}  + \overrightarrow {OC} } \right)} \right]\)

\( =  - {1 \over 3}\overrightarrow {O{A^2}}  + {1 \over 9}\overrightarrow {O{A^2}}  + {1 \over 9}\overrightarrow {O{B^2}}  + {1 \over 9}\overrightarrow {O{C^2}}  - {1 \over 3}k\overrightarrow {O{C^2}} \) (Vì \(\overrightarrow {OA} .\overrightarrow {OB}  = \overrightarrow {OB} .\overrightarrow {OC}  = \overrightarrow {OC} .\overrightarrow {OA}  = 0\))

\( =- {1 \over 3}{a^2} + {1 \over 9}{a^2} + {2 \over 9}{a^2} + {1 \over 9}{c^2} - {k \over 3}{c^2}\) (vì \(OA = a,OB = a\sqrt 2 ,OC = c\)).

Vậy \(\overrightarrow {GA} .\overrightarrow {GE}  = 0 \Leftrightarrow {1 \over 9}{c^2} - {k \over 3}{c^2} = 0 \Leftrightarrow k = {1 \over 3}.\) Vậy \(OE = {1 \over 3}c.\)

Cách 2. Chọn hệ toạ độ Đề-các vuông góc Oxyz như hình 111 thì

\(A{\rm{ }} = {\rm{ }}\left( {a{\rm{ }};{\rm{ }}0{\rm{ }};{\rm{ 0}}} \right),{\rm{ }}B{\rm{ }} = \left( {0;a\sqrt 2 ;0} \right){\rm{, }}D = {\rm{ }}\left( {a{\rm{ }};a\sqrt 2 ;{\rm{ }}0} \right),\)

\({\rm{ }}C = {\rm{ }}\left( {0{\rm{ }};{\rm{ }}0{\rm{ }};{\rm{ }}c} \right),\)\(M = \left( {0;{{a\sqrt 2 } \over 2};{c \over 2}} \right),\) Sử dụng giả thiết của bài toán, ta lập được phương trình của mặt phẳng (P) là \(c\sqrt 2 \left( {x{\rm{ }} - a} \right) - {\rm{ }}cy{\rm{ }} + {\rm{ }}3a\sqrt 2 z{\rm{ }} = {\rm{ }}0\).

Giao điếm của (P) với trục Oz là \(E{\rm{ }} = {\rm{ }}\left( {0{\rm{ }};{\rm{ }}0{\rm{ }};{c \over 3}} \right)\), suy ra \(OE{\rm{ }} = {c \over 3}.\)

LG b

Tính tỉ số thể tích của hai khối đa diện được tạo thành khi cắt khối chóp C.AOBD bởi mặt phẳng (P).

Lời giải chi tiết:

Vì \(\overrightarrow {OE}  = {1 \over 3}\overrightarrow {OC} \) , giao tuyến EF của (P) với (OCD) song song với OD nên \(\overrightarrow {DF}  = {1 \over 3}\overrightarrow {DC} \) . Ta có

\(\eqalign{  & {{{V_{C.AEF}}} \over {{V_{C.AOD}}}} = {{CE} \over {CO}}.{{CF} \over {CD}} = {2 \over 3}.{2 \over 3} = {4 \over 9},  \cr  & {{{V_{C.MEF}}} \over {{V_{C.BOD}}}} = {{CM} \over {CB}}.{{CE} \over {CO}}.{{CF} \over {CD}} = {1 \over 2}.{2 \over 3}.{2 \over 3} = {2 \over 9}. \cr} \)

Vậy \({V_{C.AEMF}} = \left( {{4 \over 9} + {2 \over 9}} \right){1 \over 2}{V_{C.AOBD}} = {1 \over 3}{V_{C.AOBD}}\), từ đó \({{{V_{C.AEMF}}} \over {{V_{AEMFDBO}}}} = {1 \over 2}.\)

LG c

Tính khoảng cách từ điểm C đến mặt phẳng (P).

Lời giải chi tiết:

Cách 1. Tứ giác lồi AEMF có các đường chéo AMEF vuông góc nên có diện tích :

\({S_{AEMF}} = {1 \over 2}AM.FE\)

\( = {1 \over 2}\sqrt {A{O^2} + O{J^2} + J{M^2}} .{2 \over 3}OD\) (J là trung điểm của OB)

\( = {1 \over 2}\sqrt {{a^2} + {{{a^2}} \over 2} + {{{c^2}} \over 4}} .{2 \over 3}\sqrt {{a^2} + 2{a^2}}  = {{\sqrt 3 } \over 6}a\sqrt {6{a^2} + {c^2}} .\)

Vậy khoảng cách từ C đến mp(P) là

\(d\left( {C{\rm{ }},{\rm{ }}\left( P \right)} \right) = {{3{V_{C.AEMF}}} \over {{S_{AEMF}}}} = {{{a^2}c{{\sqrt 2 } \over 3}} \over {{{\sqrt 3 } \over 6}a\sqrt {6{a^2} + {c^2}} }} = {{2ac\sqrt 6 } \over {3\sqrt {6{a^2} + {c^2}} }}.\)

Cách 2. Sử dụng cách 2 của câu a), ta tính được khoảng cách từ điểm \(C(0{\rm{ }};{\rm{ }}0{\rm{ }};c)\) đến mp(P) có phương trình \(c\sqrt 2 \left( {x - a} \right) - cy{\rm{ }} + {\rm{ }}3a\sqrt 2 z{\rm{ }} = {\rm{ }}0\) 

\(d\left( {C,\left( P \right)} \right) = {{\left| { - ac\sqrt 2  + 3ac\sqrt 2 } \right|} \over {\sqrt {2{c^2} + {c^2} + {\rm{ }}18{a^2}} }} = {{2ac\sqrt 6 } \over {3\sqrt {{c^2} + {\rm{ 6}}{a^2}} }}.\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved