1. Nội dung câu hỏi
Tìm tập xác định của các hàm số sau:
a) \(y = \sqrt {{4^x} - {2^{x + 1}}} \)
b) \(y = \ln (1 - \ln x)\).
2. Phương pháp giải
Điều kiện để
- \(\sqrt a \) có nghĩa là \(a \ge 0\)
- \({\log _a}x\) có nghĩa là \(x > 0\)
3. Lời giải chi tiết
a) Điều kiện để hàm số \(y = \sqrt {{4^x} - {2^{x + 1}}} \) có nghĩa là
\(\begin{array}{l}{4^x} - {2^{x + 1}} \ge 0\\ \Leftrightarrow {2^{2x}} - {2.2^x} \ge 0\\ \Leftrightarrow {2^x}\left( {{2^x} - 2} \right) \ge 0\end{array}\)
Mà \({2^x} > 0\)
\(\begin{array}{l} \Leftrightarrow {2^x} - 2 \ge 0\\ \Leftrightarrow {2^x} \ge 2\\ \Leftrightarrow x \ge 1\end{array}\)
Vậy tập xác định của hàm số \(y = \sqrt {{4^x} - {2^{x + 1}}} \) là \(\left[ {1; + \infty } \right)\)
b) Điều kiện để hàm số \(y = \ln (1 - \ln x)\) có nghĩa là
\(\left\{ \begin{array}{l}x > 0\\1 - \ln x > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x > 0\\\ln x < 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x > 0\\x < e\end{array} \right. \Leftrightarrow 0 < x < e\)
Vậy tập xác định của hàm số \(y = \ln (1 - \ln x)\) là \(\left( {0;e} \right)\)
Chương 1: Cân bằng hóa học
Unit 8: Cities of the future
Chủ đề 3: Đại cương về hóa học hữu cơ
Review Unit 4
Chuyên đề 11.2: Một số vấn đề về du lịch thế giới
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11