1. Nội dung câu hỏi
Đặt \({\log _2}5 = a,{\log _3}5 = b\). Khi đó, \({\log _6}5\) tính theo \(a\) và \(b\) bằng
A. \(\frac{{ab}}{{a + b}}\).
B. \(\frac{1}{{a + b}}\).
C. \({a^2} + {b^2}\).
D. \(a + b\).
2. Phương pháp giải
Sử dụng công thức lôgarit
3. Lời giải chi tiết
\({\log _6}5 = \frac{1}{{{{\log }_5}6}} = \frac{1}{{{{\log }_5}2 + {{\log }_5}3}} = \frac{1}{{\frac{1}{{{{\log }_2}5}} + \frac{1}{{{{\log }_3}5}}}} = \frac{1}{{\frac{1}{a} + \frac{1}{b}}} = \frac{1}{{\frac{{a + b}}{{ab}}}} = \frac{{ab}}{{a + b}}\)
Đáp án A.
Giáo dục kinh tế
Chủ đề 6: Hợp chất carbonyl - Carboxylic acid
Bài 1: Mở đầu về cân bằng hóa học
Ngữ âm
Chương II. Sóng
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11