1. Nội dung câu hỏi
Rút gọn các biểu thức sau:
a) \(A = \frac{{{x^5}{y^{ - 2}}}}{{{x^3}y}}\,\,\,\left( {x,y \ne 0} \right);\)
b) \(B = \frac{{{x^2}{y^{ - 3}}}}{{{{\left( {{x^{ - 1}}{y^4}} \right)}^{ - 3}}}}\,\,\,\left( {x,y \ne 0} \right).\)
2. Phương pháp giải
Sử dụng các công thức \({a^m}:{a^n} = {a^{m - n}};{\left( {ab} \right)^n} = {a^n}.{b^n}.\)
3. Lời giải chi tiết
a) \(A = \frac{{{x^5}{y^{ - 2}}}}{{{x^3}y}} = \frac{{{x^5}}}{{{x^3}}}.\frac{{{y^{ - 2}}}}{y} = {x^{5 - 3}}.{y^{ - 2 - 1}} = {x^2}{y^{ - 3}}.\)
b) \(B = \frac{{{x^2}{y^{ - 3}}}}{{{{\left( {{x^{ - 1}}{y^4}} \right)}^{ - 3}}}} = \frac{{{x^2}{y^{ - 3}}}}{{{{\left( {{x^{ - 1}}} \right)}^{ - 3}}.{{\left( {{y^4}} \right)}^{ - 3}}}} = \frac{{{x^2}{y^{ - 3}}}}{{{x^3}.{y^{ - 12}}}} = \frac{{{x^2}}}{{{x^3}}}.\frac{{{y^{ - 3}}}}{{{y^{ - 12}}}} = \frac{1}{x}.{y^{ - 3 + 12}} = \frac{{{y^9}}}{x}\)
Chủ đề: Sử dụng các yếu tố tự nhiên, dinh dưỡng để rèn luyện sức khỏe và phát triển thể chất
Review 4
Phần 2. Địa lí khu vực và quốc gia
Tải 10 đề thi học kì 2 Sinh 11
Chương 4. Kiểu dữ liệu có cấu trúc
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11