SGK Toán 11 - Kết nối tri thức với cuộc sống tập 2

Câu hỏi 6.22 - Mục Bài tập trang 24

1. Nội dung câu hỏi

Giải các bất phương trình sau:

a) \(0,{1^{2 - x}} > 0,{1^{4 + 2x}};\)

b) \({2.5^{2x + 1}} \le 3;\)      

c) \({\log _3}\left( {x + 7} \right) \ge  - 1;\)                                  

d) \({\log _{0,5}}\left( {x + 7} \right) \ge {\log _{0,5}}\left( {2x - 1} \right).\)


2. Phương pháp giải

- Tìm điều kiện cho phương trình

- Giải phương trình bằng định nghĩa hàm số lôgarit hoặc đưa 2 vế về cùng cơ số kết hợp biến đổi sử dụng công thức lôgarit.

 

3. Lời giải chi tiết

a) \(0,{1^{2 - x}} > 0,{1^{4 + 2x}}\)

\( \Leftrightarrow 2 - x < 4 + 2x \) (vì 0 < 0,1 < 1)

\(\Leftrightarrow 3x >  - 2 \Leftrightarrow x > \frac{{ - 2}}{3}\)

b) \({2.5^{2x + 1}} \le 3\)

\(\begin{array}{l} \Leftrightarrow {5^{2x + 1}} \le \frac{3}{2} \Leftrightarrow 2x + 1 \le {\log _5}\frac{3}{2} \Leftrightarrow 2x \le {\log _5}\frac{3}{2} - 1\\ \Leftrightarrow x \le \frac{1}{2}\left( {{{\log }_5}\frac{3}{2} - 1} \right) = \frac{1}{2}.{\log _5}\frac{3}{{10}} = {\log _5}\frac{{\sqrt {30} }}{{10}}\end{array}\)       

c) \({\log _3}\left( {x + 7} \right) \ge  - 1\)       (ĐK: x > - 7)

\( \Leftrightarrow x + 7 \ge {3^{ - 1}} \Leftrightarrow x + 7 \ge \frac{1}{3} \Leftrightarrow x \ge \frac{{ - 20}}{3}\)    

Kết hợp điều kiện ta có \(x \ge \frac{{ - 20}}{3}\)         

d) \({\log _{0,5}}\left( {x + 7} \right) \ge {\log _{0,5}}\left( {2x - 1} \right)\)   (ĐK: \(x > \frac{1}{2}\))

\(\Leftrightarrow x + 7 \le 2x - 1\) (vì 0 < 0,5 < 1) 

\(\Leftrightarrow x \ge 8\)

Kết hợp điều kiện ta có \(x \ge 8\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?

Chương bài liên quan

FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved