Bài 62 trang 14 SBT Hình học 12 Nâng cao

Lựa chọn câu hỏi để xem giải nhanh hơn
LG 1
LG 2

Cho hình tứ diện ABCD.

Lựa chọn câu hỏi để xem giải nhanh hơn
LG 1
LG 2

LG 1

Chứng minh rằng nếu chân H của đường cao hình tứ diện xuất phát từ A trùng với trực tâm của tam giác BCD và nếu \(AB \bot AC\) thì \(AC \bot AD\) và \(AD \bot AB.\)

Lời giải chi tiết:

Do H là trực tâm \(\Delta BCD\) nên \(BH \bot CD.\)

Mặt khác \(AH \bot (BCD)\) nên \(AH \bot CD.\)

Vậy \(CD \bot (ABH) \Rightarrow CD \bot AB.\)

Cùng với giả thiết \(AC \bot AB\), ta suy ra \(AB \bot (ACD) \Rightarrow AB \bot AD.\)

Tương tự \(AC \bot AD.\)

LG 2

Giả sử BC = CD = DB, AB = AC = AD. Gọi H là chân đường cao của hình tứ diện xuất phát từ A, J là chân của đường vuông góc hạ từ H xuống AD. Đặt AH = h, HJ = d. Tính thể tích của hình tứ diện ABCD theo d và h.

Lời giải chi tiết:

Từ AB = AC = AD suy ra HB = HC = HD, tức H là tâm đường tròn ngoại tiếp tam giác BCD.

Xét tam giác vuông AHD, ta có :

\(\eqalign{  & {1 \over {H{J^2}}} = {1 \over {A{H^2}}} + {1 \over {H{D^2}}}  \cr  &  \Rightarrow {1 \over {H{D^2}}} = {1 \over {{d^2}}} - {1 \over {{h^2}}}  \cr  &  \Rightarrow HD = {{hd} \over {\sqrt {{h^2} - {d^2}} }}. \cr} \)

Do tam giác BCD đều nên \(DH = BC.{{\sqrt 3 } \over 3},\) hay \(BC = DH\sqrt 3 .\)

Vậy  \(V = {1 \over 3}{S_{BCD}}.AH = {{\sqrt 3 {d^2}{h^3}} \over {4\left( {{h^2} - {d^2}} \right)}}.\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved