1. Nội dung câu hỏi
Tìm tập xác định của các hàm số sau:
a) \(y = \log \left| {x + 3} \right|;\)
b) \(y = \ln \left( {4 - {x^2}} \right).\)
2. Phương pháp giải
\({\log _a}x\) có nghĩa khi \(x > 0.\)
3. Lời giải chi tiết
a) \(y = \log \left| {x + 3} \right|\) có nghĩa khi \(\left| {x + 3} \right| > 0\)
Mà \(\left| {x + 3} \right| \ge 0 \) với mọi \( x \in \mathbb{R}\) nên \(\left| {x + 3} \right| > 0\) khi \( x + 3 \not = 0 \Leftrightarrow x \not = -3\)
Vậy tập xác định của hàm số \(y = \log \left| {x + 3} \right|\) là \(\mathbb{R}\backslash \left\{ -3 \right\}\).
b) \(y = \ln \left( {4 - {x^2}} \right)\) có nghĩa khi \(4 - {x^2} > 0 \Leftrightarrow {x^2} < 4 \Leftrightarrow - 2 < x < 2.\)
Vậy tập xác định của hàm số \(y = \ln \left( {4 - {x^2}} \right)\) là \(\left( { - 2;2} \right).\)
Bài 6. Giới thiệu một số loại súng bộ binh, thuốc nổ, vật cản và vũ khí tự tạo
Chủ đề 2: Chủ nghĩa xã hội từ năm 1917 đến nay
Unit 7: Things that Matter
Unit 2: Get well
Tóm tắt, bố cục, nội dung chính các tác phẩm SGK Văn 11 - Tập 2
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11