Đề bài
Cho 2 điểm phân biệt A và B
a) Xác định điểm O sao cho \(\overrightarrow {OA} + 3\overrightarrow {OB} = \overrightarrow 0 \)
b) Chứng minh rằng với mọi điểm M, ta có \(\overrightarrow {MA} + 3\overrightarrow {MB} = 4\overrightarrow {MO} \)
Phương pháp giải - Xem chi tiết
a) Chèn điểm: \(\overrightarrow {OA} = \overrightarrow {OB} + \overrightarrow {BA} \)
Từ đó tìm \( \overrightarrow {OB}\) theo \(\overrightarrow {AB} \) đã biết
b) Chèn điểm O, làm xuất hiện \({\overrightarrow {MO} }\) ở vế trái.
Lời giải chi tiết
a) \(\overrightarrow {OA} + 3\overrightarrow {OB} = \overrightarrow 0 \)
\(\begin{array}{l}
\overrightarrow {OA} + 3\overrightarrow {OB} = \vec 0\\
\Leftrightarrow \overrightarrow {OB} + \overrightarrow {BA} + 3\overrightarrow {OB} = \vec 0\\
\Leftrightarrow \overrightarrow {OB} + 3\overrightarrow {OB} = - \overrightarrow {BA} \\
\Leftrightarrow 4\overrightarrow {OB} = \overrightarrow {AB} \\
\Leftrightarrow \overrightarrow {OB} = \frac{1}{4}\overrightarrow {AB}
\end{array}\)
Vậy O thuộc đoạn AB sao cho \(OB = \frac{1}{4}AB\)
b) Ta có:
\(\begin{array}{l}
\overrightarrow {MA} + 3\overrightarrow {MB} = \left( {\overrightarrow {MO} + \overrightarrow {OA} } \right) + 3\left( {\overrightarrow {MO} + \overrightarrow {OB} } \right)\\
= \left( {\overrightarrow {MO} + 3\overrightarrow {MO} } \right) + \left( {\overrightarrow {OA} + 3\overrightarrow {OB} } \right)\\
= 4\overrightarrow {MO} + \overrightarrow 0 = 4\overrightarrow {MO} . (đpcm)
\end{array}\)
Chương 1. Lịch sử và sử học, vai trò của sử học
Chương 1. Mệnh đề và tập hợp
Chương IV. Năng lượng, công, công suất
Đất nước (Nguyễn Đình Thi)
Unit 5: Inventions
Chuyên đề học tập Toán - Cánh diều Lớp 10
Đề thi, đề kiểm tra Toán lớp 10 - Kết nối tri thức
Đề thi, đề kiểm tra Toán lớp 10 - Chân trời sáng tạo
Đề thi, đề kiểm tra Toán lớp 10 - Cánh diều
Bài giảng ôn luyện kiến thức môn Toán lớp 10
Chuyên đề học tập Toán - Chân trời sáng tạo Lớp 10
Chuyên đề học tập Toán - Kết nối tri thức Lớp 10
Lý thuyết Toán Lớp 10
SBT Toán - Cánh Diều Lớp 10
SBT Toán - Chân trời sáng tạo Lớp 10
SBT Toán - Kết nối tri thức Lớp 10
SGK Toán - Cánh diều Lớp 10
SGK Toán - Kết nối tri thức Lớp 10