PHẦN ĐẠI SỐ - TOÁN 8 TẬP 2

Bài 6 trang 9 sgk toán 8 tập 2

Đề bài

Tính diện tích của hình thang \(ABCD\) (h.1) theo \(x\) bằng hai cách:

1) Tính theo công thức \(S = BH \times (BC + DA) : 2\);

2) \(S = {S_{ABH}} + {S_{BCKH}} + {S_{CKD}}\) 

Sau đó sử dụng giả thiết \(S = 20\) để thu được hai phương trình tương đương với nhau. Trong hai phương trình ấy, có phương trình nào là phương trình bậc nhất không?

Phương pháp giải - Xem chi tiết

Phương trình có dạng \(ax+b=0\), với \(a\) và \(b\) là hai số đã cho và \(a\ne0\), được gọi là phương trình bậc nhất một ẩn.

Lời giải chi tiết

 

Gọi S là diện tích hình thang ABCD. 

1) Theo công thức

                    \(S =  \dfrac{BH(BC+DA)}{2}\)

Ta có: \(AD = AH + HK + KD\)

\(\Rightarrow AD = 7 + x + 4 = 11 + x\)

Có \(BH\bot HK, CK\bot HK\) (giả thiết)

Mà \(BC//HK\) (vì \(ABCD\) là hình thang)

Do đó \(BH\bot BC, CK\bot BC\)

Tứ giác \(BCKH\) có bốn góc vuông nên \(BCKH\) là hình chữ nhật

Mặt khác: \(BH=HK=x\) (giả thiết) nên \(BCKH\) là hình vuông

\( \Rightarrow BH = BC =CK=KH= x\)

Thay \(BH=x\), \(BC=x\), \(DA=11+x\) vào biểu thức tính \(S\) ta được:

\(S = \dfrac{{x\left( {x + 11 + x} \right)}}{2} = \dfrac{{x(11 + 2x)}}{2}\)\(\,=\dfrac{{11x + 2{x^2}}}{2}\) 

2) Ta có: 

\(\eqalign{
& S = {S_{ABH}} + {S_{BCKH}} + {S_{CKD}} \cr 
& \,\,\,\,\, = {1 \over 2}BH.AH + BH.HK + {1 \over 2}CK.KD \cr 
& \,\,\,\,\, = {1 \over 2}x.7 + x.x + {1 \over 2}.x.4 \cr 
& \,\,\,\,\, = {7 \over 2}x + {x^2} + 2x \cr 
& \,\,\,\,\, =x^2+{11 \over 2}x \cr} \)

Vậy \(S = 20\) ta có hai phương trình: 

  \(\dfrac{{11x + 2{x^2}}}{2}= 20\)          (1)

  \( \dfrac{11}{2}x + x^2  = 20  \)       (2)

Hai phương trình trên tương đương và cả hai phương trình không có phương trình nào là phương trình bậc nhất.

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved