Bài 6 trang 39 SGK Hình học lớp 12

Đề bài

Cắt một hình nón bằng một mặt phẳng qua trục của nó ta được thiết diện là một tam giác đều cạnh \(2a\). Tính diện tích xung quanh và thể tích của hình nón đó.

Phương pháp giải - Xem chi tiết

+) Tính độ dài đường sinh \(l\) và bán kính đáy \(r\) của hình nón.

+) Tính độ dài đường cao của hình nón, sử dụng công thức \(h = \sqrt {{l^2} - {r^2}} \).

+) Tính diện tích xung quanh và thể tích của hình nón đó: \({S_{xq}} = \pi rl,\,\,V = \frac{1}{3}\pi {r^2}h\)

Lời giải chi tiết

Theo đề bài, đường kính của hình tròn đáy của nón bằng \(\displaystyle 2a\).

Vậy bán kính \(\displaystyle r = a\) và độ dài đường sinh của hình nón \(\displaystyle l = 2a\).

Suy ra chiều cao của hình nón: \(\displaystyle h = \sqrt {{l^2} - {r^2}}  = \sqrt {4{a^2} - {a^2}}  = a\sqrt 3 \)

Vậy diện tích xung quanh của hình nón là: \(\displaystyle S_{xq} = πrl = π.a.2a=2a^2π\)

Thể tích khối nón là: \(\displaystyle V = {1 \over 3}\pi {r^2}.h = {1 \over 3}\pi {a^2}.a\sqrt 3  = {{\pi {a^3}\sqrt 3 } \over 3}\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved