Bài 6 trang 223 Sách bài tập Hình học lớp 12 Nâng cao.

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b

Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, cạnh SA = a và vuông góc với mặt phẳng đáy. Một mặt phẳng đi qua CD cất các cạnh SA, SB lần lượt tại M, N. Đặt AM = x.

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b

LG a

Tứ giác MNCD là hình gì ? Tính diện tích tứ giác MNCD theo a, x.

Lời giải chi tiết:

   

Do \(AB//CD,{\rm{ }}AB \subset \left( {SAB} \right),{\rm{ }}CD \subset \left( {MNCD} \right)\) nên hai mặt phẳng (SAB) và (MNCD) cắt nhau theo giao tuyến MN song song với AB và CD.

Mặt khác \(CD \bot \left( {SAD} \right) \Rightarrow CD \bot DM.\)

Vậy MNCD là hình thang vuông.

Vì MN//AB nên ta có \({{MN} \over {AB}} = {{SM} \over {SA}}.\)

Vây \(MN = {{AB.SM} \over {SA}} = {{aSM} \over a} = SM = a - x.\)

\({S_{MNCD}} = {1 \over 2}\left( {MN{\rm{ }} + {\rm{ }}CD} \right).DM\)

\(\eqalign{  &  = {1 \over 2}\left( {a - {\rm{ }}x + a} \right)\sqrt {{a^2} + {x^2}}   \cr  &  = {1 \over 2}\left( {2a - {\rm{ }}x} \right)\sqrt {{a^2} + {x^2}} . \cr} \)

LG b

Xác định giá trị của  để thể tích của hình chóp S.MNCD bằng \({2 \over 9}\) lần thể tích hình chóp S.ABCD.

Lời giải chi tiết:

\({S_{ABCD}} = {1 \over 3}{S_{ABCD}}.SA = {1 \over 3}{a^3}\)

\(=  > {V_{S.ACD}}{\rm{ }} = {V_{S.ACB}} = {1 \over 6}{a^3}.\)

         \({V_{S.MNCD}} = {V_{S.MNC}} + {V_{S.MCD}}.\)

Mặt khác

\({{{V_{S.MCN}}} \over {{V_{S.ACB}}}} = {{SM} \over {SA}}.{{SC} \over {SC}}.{{SN} \over {SB}} = {\left( {{{a - x} \over a}} \right)^2}\)

\(\Rightarrow {{{V_{S.MCN}}} \over {{V_{S.ABCD}}}} = {1 \over 2}{\left( {{{a - x} \over a}} \right)^2}.\)

\({{{V_{S.MCD}}} \over {{V_{S.ACD}}}} = {{SM} \over {SA}}.{{SC} \over {SC}}.{{SD} \over {SD}}={{SM} \over {SA} }= {{a - x} \over a} \)

\(\Rightarrow {{{V_{S.MCD}}} \over {{V_{S.ABCD}}}} = {{a - x} \over {2a}}.\)

\({{{V_{S.MNCD}}} \over {{V_{S.ABCD}}}} = {{{V_{S.MCN}} + {V_{S.MCD}}} \over {{V_{S.ABCD}}}} = {{{V_{S.MCN}}} \over {{V_{S.ABCD}}}} + {{{V_{S.MCD}}} \over {{V_{S.ABCD}}}} \)

\( = {1 \over 2}{\left( {{{a - x} \over a}} \right)^2} + {{a - x} \over {2a}}.\)

Từ đó ta có \({{{V_{S.MNCD}}} \over {{V_{S.ABCD}}}} = {2 \over 9} \Leftrightarrow {\rm{ }}9{x^2} - {\rm{ }}27ax + 14{a^2} = {\rm{ }}0\)

 \(\Leftrightarrow \left[ \matrix{  x = {7 \over 3}a\text{ ( loại vì theo giả thiết x < a)}\hfill \cr  x = {2 \over 3}a \hfill \cr}  \right.\)   

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved