1. Tổng ba góc trong một tam giác
2. Hai tam giác bằng nhau
3. Trường hợp bằng nhau thứ nhất của tam giác: Cạnh - cạnh - cạnh (c.c.c)
4. Trường hợp bằng nhau thứ hai của tam giác: Cạnh - góc - cạnh (c.g.c)
5. Trường hợp bằng nhau thứ ba của tam giác: Góc - góc - góc (g.g.g)
Bài tập - Chủ đề 3: Tam giác - Tam giác bằng nhau
Luyện tập - Chủ đề 3: Tam giác - Tam giác bằng nhau
Đề bài
Cho góc xOy có số đo \({120^0}\) , lấy điểm A thuộc tia phân giác của góc đó. Kẻ AB vuông góc với Ox \((B \in 0x)\) , kẻ AC vuông góc Oy \((C \in Oy)\). Tam giác ABC là tam giác gì ? Vì sao ?
Lời giải chi tiết
Gọi Oz là tia phân giác của góc xOy \(\Rightarrow \widehat {AOB} = \widehat {COA} = {1 \over 2}\widehat {xOy} = {60^0}\)
Tam giác OAB có: \(\widehat {OBA} = {90^0}\) vì \(AB \bot 0x\)
Nên \(\widehat {OAB} + \widehat {AOB} = {90^0} \Rightarrow \widehat {OAB} = {90^0} - \widehat {AOB} = {30^0}.\)
Tam giác OAC có: \(\widehat {AOC} = {90^0}\) vì \(AC \bot Oy\)
Nên \(\widehat {OAC} + \widehat {COA} = {90^0} \Rightarrow \widehat {OAC} = {90^0} - \widehat {COA} = {30^0}\)
Xét tam giác OAB và OAC ta có:
\(\widehat {OAB} = \widehat {OAC}( = {30^0})\)
OA là cạnh chung.
\(\widehat {AOB} = \widehat {COA}( = {60^0})\)
Do đó: \(\Delta OAB = \Delta OAC(g.c.g) \Rightarrow AB = AC \Rightarrow \Delta ABC\) cân tại A.
Mặt khác \(\widehat {BAC} = \widehat {OAB} + \widehat {OAC} = {30^0} + {30^0} = {60^0}\)
Do đó: tam giác ABC là tam giác đều.
Chương 10. Một số hình khối trong thực tiễn
Bài 5. Màu sắc trăm miền
Chương 1. Số hữu tỉ
Bài giảng ôn luyện kiến thức giữa học kì 2 môn Ngữ văn lớp 7
Chủ đề 4: Ước mơ
Đề thi, đề kiểm tra Toán - Chân trời sáng tạo Lớp 7
Bài tập trắc nghiệm Toán - Kết nối tri thức
Đề thi, đề kiểm tra Toán - Cánh diều Lớp 7
Bài tập trắc nghiệm Toán - Cánh diều
Đề thi, đề kiểm tra Toán - Kết nối tri thức Lớp 7
Bài tập trắc nghiệm Toán - Chân trời sáng tạo
Bài giảng ôn luyện kiến thức môn Toán lớp 7
Lý thuyết Toán Lớp 7
SBT Toán - Cánh diều Lớp 7
SBT Toán - Chân trời sáng tạo Lớp 7
SBT Toán - Kết nối tri thức Lớp 7
SGK Toán - Cánh diều Lớp 7
SGK Toán - Chân trời sáng tạo Lớp 7
SGK Toán - Kết nối tri thức Lớp 7
Vở thực hành Toán Lớp 7