PHẦN ĐẠI SỐ - VỞ BÀI TẬP TOÁN 9 TẬP 2

Bài 6 trang 12 Vở bài tập toán 9 tập 2

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b

Cho hai phương trình 2x + y = 4 và 3x + 2y = 5

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b

LG a

LG a

Tìm nghiệm tổng quát của mỗi phương trình trên.

Phương pháp giải:

Sử dụng cách tìm nghiệm của phương trình bậc nhất hai ẩn \(ax + by = 0\,\left( {a,b \ne 0} \right)\) để tìm nghiệm tổng quát của mỗi phương trình đã cho.

Lời giải chi tiết:

Ta có \(2x + y = 4 \Leftrightarrow y =  - 2x + 4\)

Vậy nghiệm tổng quát của phương trình thứ nhất là \(\left( {x; - 2x + 4} \right)\) với \(x \in \mathbb{R}.\)

Tương tự, \(3x + 2y = 5 \Leftrightarrow y = \dfrac{{ - 3}}{2}x + \dfrac{5}{2}\)

Vậy nghiệm tổng quát của phương trình thứ hai là \(\left( {x; - \dfrac{3}{2}x + \dfrac{5}{2}} \right)\) với \(x \in \mathbb{R}.\)

LG b

LG b

Vẽ các đường thẳng biểu diễn tập nghiệm của hai phương trình trong cùng một hệ trục tọa độ rồi xác định nghiệm chung của chúng.

Phương pháp giải:

Xác định tọa độ các điểm mà đường thẳng đi qua.

Vẽ các đường thẳng trên cùng hệ trục tọa độ để xác định nghiệm chung. 

Lời giải chi tiết:

Đường thẳng \(2x + y = 4\) đi qua các điểm có tọa độ \(\left( {2;0} \right);\left( {1;2} \right)\)

Đường thẳng \(3x + 2y = 5\) đi qua các điểm có tọa độ \(\left( {1;1} \right);\left( { - 1;4} \right)\)

Vẽ hai đường thẳng trong cùng hệ tọa độ (h.9)

Hai đường thẳng cắt nhau tại \(M\left( {3; - 2} \right)\)

Thử lại, ta thấy  \(\left( {3; - 2} \right)\) nghiệm đúng phương trình \(2x + y = 4\) (vì \(2.3 + \left( { - 2} \right) = 4\)) và phương trình \(3x + 2y = 5\) (vì \(3.3 + 2\left( { - 2} \right) = 5\)).

Vậy \(\left( {3; - 2} \right)\) là nghiệm chung của hai phương trình đã cho.

Chú ý:

Nói chung, việc xác định tọa độ của \(M\) chỉ cho kết quả gần đúng. Do đó, để chắc chắn cặp số tìm được (tọa độ của điểm \(M\)) là nghiệm của phương trình thì ta phải thử trực tiếp vào phương trình.

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved